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Abstract

As with all good mathematics, category theory attempts to create connections between abstract ideas.
A way of translating information between different mathematical ideas provides free theorems and
proofs but far greater than this, it gives us a means to formalise similarities in intuition or indeed form
entirely new intuition, useful whether or not an idea is well understood. Category theory does this
in such a general way that it may almost been seen as a language. It is only in this language that
connections that appear to us intuitively can be made into formal mathematical correspondences. In
this project, we will deal with the preliminaries of category theory, with a particular focus on forming
examples in the categories of covering spaces for a topological space X, and separable field extensions.
It is here we will see how the language of category theory connects these seemingly very separate areas
of maths as instances of Galois Categories. With our categorical foundations laid, we will cover an
introduction to the theory of affine group schemes and lay out the definition of a neutral Tannakian
categories to see how these two areas are related.
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Introduction

In the study of algebraic topology, when students first meet fundamental groups they are commonly
introduced to the topic of covering spaces. The theory is geometrically intuitive but also surprising and
revealing. The relationships between deck transformations and fundamental groups are a good example
of how topological information corresponds to algebraic information. In an undergraduate course, the
conclusion of that section is often the correspondence between isomorphism classes of certain covering
spaces and sets of subgroups of the fundamental group.

At a similar level of study, students might take a course on Galois theory. It is most likely in a
different part of the maths department, but towards the end similarities seem to arise. Again there is
a large object existing "over" a small one, of automorphisms which preserve structure. In the main
theorem, we are introduced to another correspondence, this time between field extensions and open
subgroups of a Galois group.

There is an underlying structure that links these two examples, and it is best expressed in the
language of category theory. The similarities are clearest in the form of the following two theorems.

Theorem 0.0.1. Let k be a field. Then the category kSAlg of separable k-algebras is anti-equivalent
to the category Galpks{kq-FinSet of finite sets with a continuous action of Galpks{kq, where ks is the
separable closure of k.

Theorem 0.0.2. Let X be a topological space. Then there is a canonical profinite group π̂pX,xq for
any x P X such that the category CovX of finite covering spaces of X is equivalent to the category
π̂pX,xq-FinSet of finite sets with continuous action of π̂pX,xq.

Further, if X admits a universal cover, then π̂pX,xq is exactly the profinite completion of πpX,xq,
the fundamental group of X. If the cover is finite, then this is exactly πpX,xq.

The first half of this paper is a comprehensive exposition on the fundamentals of category theory.
We rely heavily on examples and in particular emphasise the shift in focus from the contents of objects
to the morphisms between them that this areas of maths espouses. The aim is to introduce the reader
to the way that category theory generalises and pulls together many fields, with the hope that the
intuition developed will help us when we work with more complicated categories and proofs.

In this part, we focus closely on two examples of categories, CovX and kSAlgop. These are less
clean cut than more familiar ones and allow us to look at how the ideas we generalise with categorical
language apply in such settings.

This focus also has a dual purpose. In chapter 4, we utilise our newly developed tools to approach
the statements of theorem 0.0.1 and theorem 0.0.2, which make strong claims about the two familiar
categories. The aim of this chapter is to introduce the definition of a Galois category and to show that
exactly these give rise to the algebraic behaviour in the two theorems.

The final section of the project looks at another correspondence between a category defined en-
tirely by its properties and an algebraic ones. We give a brief introduction to the theory of affine
group schemes, including their representations, and then give a similarly brief introduction to tensor
categories. Our final result is the statement of a surprising equivalence between the categories of repre-
sentations of an affine group scheme and a very particular tensor category, called a neutral Tannakian
category.

The results from the first part draw largely from [2] and [6]. On Galois categories, [6] remains an
important source alongside [5] and [12]. The last section follows closely [3] and [11]. Since the main
focus of this work is pedagogical, many of the examples are standard but the perspectives explored
are our own. Similarly, there are a number of sources that occur only once or twice in the pursuit of
a good example or revealing definition.

There is only one piece of mathematical convention that needs stating: all rings will assumed to be
commutative with 1.
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Chapter 1

Categories, Diagrams and a New
Approach

1.1 Categories

Unless stated otherwise, the definitions in this section are those in [2].

Definition 1.1.1. A category C consists of the following data:

1. a collection, Ob pCq, of objects: A, B, C, . . .

2. for each pair of objects A and B, a collection CpA,Bq, or HomCpA,Bq, of morphisms: f , g, h,
. . . .

with two further pieces of information:

(i) for each triple of objects A, B and C, a composition law

´ ˝ ´ : HomCpA,Bq ˆHomCpB,Cq Ñ HomCpA,Cq

pf, gq ÞÑ g ˝ f “ gf

which is associative: if f : A ÝÑ B, g : B ÝÑ C and h : C ÝÑ D then

h ˝ pg ˝ fq “ ph ˝ gq ˝ f. (1.1)

(ii) for each object A, there is a designated identity morphism 1A : A ÝÑ A with the property that
for any object B and any f : A ÝÑ B,

1B ˝ f “ f “ f ˝ 1A

Remark. Since some of the morphisms we look at will not be functions, we will denote a morphism
with a longer arrow than a function, like f : A ÝÑ B. Some of the language of functions, however, is
adopted here:

• Morphisms may also referred to as maps or arrows.

• If f : A ÝÑ B, then dompfq “ A is the domain of f and codpfq “ B is the codomain of f.

• Where there is no ambiguity, we may write gf for g ˝ f .

Definition 1.1.2. A category C is small if and only if Ob pCq is a set and for all A,B P Ob pCq,
HomCpA,Bq is also a set.

This definition hints that we may talk about categories that do not fulfil these conditions, but for
the moment let us look at some examples of small categories.
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Examples. 1. Since morphisms were a generalisation of set-functions, a good first example of a
category is any universe of sets and the functions between them.

For example, we may construct a category N which has Ob pNq “ PpNq, the power-set of the
set of natural numbers, so the objects of N are just subset of N. Given two objects, N,M Ă N,
we can take HomNpN,Mq to be the set of all functions f : N Ñ M . Composition is given by
function composition and the identity morphism is the identity function.

Alternatively, let N1 have the same set of objects, but now HomN1pN,Mq has only increasing
functions f : N Ñ M . Since the composition of increasing functions is increasing, and identity
map on any set is itself increasing, this satisfies all the conditions required.

2. Many of the most commonly seen categories have as objects some kind of set with an algebraic
structure and have structure preserving maps as morphisms.

We then might invent the category fsgrp, of finite symmetric groups, has as objects the groups
Sr of permutations of the set t1, . . . , ru for r P N. The morphisms HomfsgrppSr, Snq are the
homomorphisms φ : Sr Ñ Sn.

3. [7] Objects need not be sets and morphisms need not be functions. Indeed the generality of these
axioms allow a whole lot of flexibility as to what can be seen as a category.

Recall. A partially ordered set is a pair pX,ďq with a set X and ď a reflexive, anti-symmetric,
transitive relation on X.

From any partially order set pX,ďq we can construct a category X that contains exactly the
same information. This category has Ob pXq “ X and we have that HomXpx, yq has exactly one
element if and only if x ď y and is empty otherwise.

Note that we can only consider the composition of morphisms fxy : x ÝÑ y and fyz : y ÝÑ z if
there exist such morphisms. By our definition, this is equivalent to saying that x ď y and y ď z.
If we have this then the composition is fyz ˝ fxy : x ÝÑ z. Since ď is transitive, we must have
that x ď z and so there is exactly the one such morphism. Hence we define composition exactly
as such.

Since x ď x, there is exactly one morphism fxx : x ÝÑ x and exhibits exactly what is needed to
be the identity morphisms for if there is a morphism fxy : x ÝÑ y then it is the unique element
of HomXpx, yq and fxy ˝ fxx : x ÝÑ y must again be this unique morphism.

Note that some authors take the convention that HomXpx, yq has only one element if and only
if y ď x, but the method is otherwise the same.

4. [2] Similarly, we view a group as a specific type of category. Let G be a group and let us define
a category G by giving it a single object, which we will call ˚ and letting HomGp˚, ˚q (the
only collection of morphisms in this category) consist of exactly the elements of the group G.
Composition of morphisms is given by multiplication of the elements in G.

The associativity condition of group multiplication gives associativity of composition and the
identity element of the group corresponds to the identity morphism 1˚.

There are a number of ways to develop the foundations of category theory such that we are not
constrained to small categories. This is helpful, indeed large categories are often more intuitive and
appear more often. For example, Set, the category of sets, consisting of all sets as objects and all
possible functions between two sets as the arrows between them is not a small category, since Ob pSetq
is not a set, but we will find plays a crucial part in our later work. These foundations are a large
topic that deserves their own project and so we shall largely ignore them, taking for granted instead
that we can talk meaningfully about categories that are in this sense large. A good discussion of how
this may be done can be found in sections 1.6-7 of [7].We will adopt some set-theoretical language
for our shorthand: We will use A P Ob pCq to mean A is an object of the category C and will write
f P HomCpA,Bq for f : A ÝÑ B, even if these are not strictly sets.

Despite all this, we might want to talk about categories that, even though they are not small, do
have some constraint on size:

Definition 1.1.3. A categoryC is called locally small if and only if, for all A,B P Ob pCq, HomCpA,Bq
is a set.
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All small categories are locally small. The category Set defined above is also locally small. Even
though there is no set of all sets, given sets A and B there is always a set of all functions from A to B.

Now we have broken from the constraints of small categories we can find many more categories
which we have encountered before:

Examples. 1. If we don’t like infinite sets, we instead might consider FinSet, the category of finite
sets, which has finite sets as its objects and the functions between them as morphisms. In fact,
this category will be used heavily in chapter 4.

2. As we saw before, a huge number of commonly encountered categories fall under categories of
objects that are sets with some structure with morphisms being functions that relate to this
structure in some way:

Category name Category objects Category morphisms
Grp Groups Group homomorphisms

AbGrp Abelian Groups Group homomorphisms
Rng Rings Ring homomorphisms
Top Topological Spaces Continuous maps
Top˚ Pointed Topological Spaces Point-preserving continuous maps
Htpy Topological Spaces Homotopy classes of continuous maps

It is worth noting that Top and Htpy have the same objects but the morphisms are different.
The definition of a category is flexible enough to allow this. In fact, as we go on here we will
realise that the majority of the ’good stuff’ only really refers to objects in passing, with the actual
category theory concerning itself mostly with morphisms. It is this shift in perspective that can
be so powerful: if we are considering sets, we are most often concerned with their elements,
whereas if we are considering categories, we are more interesting in how the objects relate to one
another through arrows.

3. An example that will be crucial later on in this paper requires some background from Algebraic
topology:

Definition 1.1.4. Let X be a topological space. Given a map f : Y Ñ X, an open set U Ă

X is evenly covered by f if f´1 pUq is a disjoint union of open sets each of which is mapped
homeomorphically onto U by f . In other words: f´1 pUq “

Ť

iPI Vi with Vi X Vj “ H if i i ‰ j
and further, for all i P I, f |Vi

: Vi Ñ U is a homeomorphism.

A covering space of X is a continuous map p : Y Ñ X for some space Y with the property that
for all x P X there is a neighbourhood of x that is evenly covered by p. [4]

A lot of the studying spaces and their covers, as we would expect, needs to consider all the points
’above’ a point in the base. So, for a covering space p : Y Ñ X of X and a point x P X, the fibre
over x is the set p´1 ptxuq, though we may abuse notation and write p´1 pxq . A finite covering
space of X is a covering space where all the fibres are finite.

A helix, with the map that forgets the height of a point and instead projects it directly onto S1 is
a covering space. Unfortunately the scope of this paper doesn’t allow us to indulge in examples
here, but intuitively we can imagine a covering space as the result of cutting and gluing a number
of copies of X in a symmetric enough way. The helix is the result of taking

Ů

nPN S1, lining each
copy of S1 in a stack, cutting them all at a point and sticking one of the resulting lose ends to
the copy above and one below.

If we want to study finite covering spaces with category theory, so we must construct an ap-
propriate category. Let us fix a topological space X. We might be inclined to take the objects
of our new category CovX to be those topological spaces Y that omit a finite covering space
p : Y Ñ X. With a little investigation, however, we notice that Y might be part of a covering
space in more than one way: 1S1 : S1 Ñ S1 is a covering space (all identity arrows are) but so are
all reflections and rotations of S1. We can see a covering map p : Y Ñ X as encoding a way in
which Y can be folded onto X. For a given Y we would hope to distinguish between the different
foldings.

The solution is to take the objects of CovX to in fact be the foldings themselves, the finite
covering spaces p : Y Ñ X for any topological spaces Y . Our next step then is to decide on
morphisms. Given two covering spaces pY : Y Ñ X and pZ : Z Ñ X, we define morphisms from

7



pY to pZ to be continuous maps φ : Y Ñ Z with the additional property of preserving the folding
onto X: from a point y P Y , it doesn’t matter if we go straight to X or we go over φ to Z first.
We may express this directly by

HomCovX
ppY : Y Ñ X, pZ : Z Ñ Xq “ tφ : Y Ñ Z | pZ ˝ φ “ pY u.

This relationship can also be shown by an illustration:

Y Z

X

φ

pY pZ

The morphisms are exactly those continuous maps φ such that if we take an element of Y , it
wouldn’t matter the route of arrows we take around this diagram.

We compose morphisms by regular function composition. If pW : W Ñ X, pY : Y Ñ X and
pZ : Z Ñ X are all covering spaces, φ1 : W Ñ Y and φ2 : Y Ñ Z are covering space morphisms,
then

φ2 ˝CovX
φ1 “ φ2 ˝ φ1

since
pZ ˝ pφ2 ˝ φ1q “ ppZ ˝ φ2q ˝ φ1 “ pY ˝ φ1 “ pW

as we’d hope for a morphism from pW to pZ .

This can be seen instead using our illustrations:

We have

W Y Y Z

X X

φ1

pW
pY pY

φ2

pZ

and since these diagrams tells us routes that are permissible, we can join them at the common
map in the middle pY to get a new illustration:

W Y Z

X

φ1

φ2 ˝φ1

pW

φ2

pY
pZ

where we can see the composition φ2 ˝ φ1 is allowed because it is just the action of following the
top two arrows. Since this is telling us permissible routes, we are also ok to forget arrows. So
forgetting all the arrows in the middle, we have

W Z

X

φ2 ˝φ1

pW pZ

which is exactly the diagram we needed to show φ2 ˝ φ1 is a morphisms of covering spaces.

Associativity and identity are adopted directly because these are continuous maps. Thus we
have constructed our last example of a category, the category CovX over covering spaces over a
topological space X.

Formally, then:

Definition 1.1.5. Let X be a topological space. The category of finite coverings of X, denoted CovX ,
has as its objects covering spaces pY : Y ÝÑ X and for morphisms CovXppY1

, pY2
q, continuous maps

φ : Y1 ÝÑ Y2 such that pY2
˝ φ “ pY1

.
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1.2 Digression on Diagrams
In our discussion of diagrams and illustrations we have happened upon an idea essential to categorical
thinking and which will feature heavily in our future arguments: commutative diagrams.

Definition 1.2.1. A diagram in a category C is a directed multigraph (a graph where multiple
edges are allowed between vertexes) where the vertexes are objects of C and the edges are morphisms
between the corresponding edges, in the correct direction. Further, we say the diagram commutes or it
is a commutative diagram if any two paths between edges are the same, where the process of following
one edge and then another is given by composing these morphisms.

We will see this is an unnecessarily restricted definition of a diagram and supersede it in section 2.2.
Nonetheless, this definition is sufficient for the moment and gives us intuition that will help further
along.

Example. Let A, B and C be sets, and let us take functions f : A Ñ B, g : B Ñ C and h : A Ñ C.
Then

A B

C

f

h
g

is a diagram in Set and it commutes if and only if h “ g ˝ f .

A lot of the information we have already discussed can be restated in terms of diagrams:

Examples. 1. The associativity of composition of morphisms given in eq. (1.1) can be expressed
as the statement: for any category C, objects A,B,C,D P Ob pCq and morphisms f : A ÝÑ

B, g : B ÝÑ C, h : C ÝÑ D the following diagram commutes

A B C D.
f

g˝f

h˝g

h

We will use this property without concern in all our diagrams.

2. The key property of identity morphisms can be expressed as the statement: for any category C,
objects A,B P Ob pCq and morphism f : A ÝÑ B the following diagram commutes

A B1A

f
1B .

3. Let us give a more particular example in Set. Let A,B and C be sets, and let A ˆ B be
the Cartesian product with projections πA and πB . Then for any functions fA : C Ñ A and
fB : C Ñ B, the following diagram commutes

A AˆB B.

C

πBπA

pfA,fBq
fBfA

Our next important definition then can be constructed with the help of diagrams.

Definition 1.2.2. A morphism f : A ÝÑ B in a category C is an isomorphism if there exists an
morphism f´1 : B ÝÑ A such that the following diagram commutes:

A B1A

f

f´1

1B

That is, such that f´1 is an inverse to f :

f ˝ f´1 “ 1B and f´1 ˝ f “ 1A.

We may denote an isomorphism by writing f : A
„
ÝÝÑ B, and will say that A and B are isomorphic,

denoted by A – B.
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Examples. 1. Category Category morphisms Category isomorphisms
Set Set functions Bijections
Grp Group homomorphisms Group isomorphisms
Rng Rings homomorphisms Ring isomorphisms
Top Continuous functions Homeomorphisms
Htpy Homotopy classes of continuous maps Homotopy Equivalences [8]

2. If we return to our example of a group G as a category G with a single element ˚ and with
HomGp˚, ˚q “ G then we note that the fact that all elements of the group have an inverse is
equivalent to saying that every morphism in G is an isomorphism.

A category where every morphisms is an isomorphism is called a groupoid.

1.3 Creating New Categories from Old
Now that we have some definitions, and some examples of categories, we can look at examples of how
to build new categories from old ones.

Definition 1.3.1. Given a category C we can construct the opposite category, denoted Cop, which is
the result of just reversing all the arrows in C.

In other words, Ob pCopq “ Ob pCq, HomCoppA,Bq “ HomCpB,Aq and composition is given by

φ ˝Cop ψ : “ ψ ˝C φ.

This gives rise to an idea of duality. If a proposition is true for the category C then we can derive a
proposition that is true for Cop by reversing all the arrows in the original proposition. In the simplest
case, if we know a diagram commutes in C then the diagram in Cop obtained by reversing all the
arrows must also commute. Often, we use the prefix co- to denote an construction performed in the
opposite category, or in some sense with the arrows reversed.

Example. For a group considered as a category with only one object G, the opposite category Gop

is exactly the opposite group1. If G is commutative, this is the same as saying for any morphisms
φ, ψ P HomGp˚, ˚q the diagram

˚ ˚

˚ ˚

φ

ψ ψ

φ

commutes. Correspondingly, for any two morphisms φop, ψop P HomGopp˚, ˚q, the opposite diagram

˚ ˚

˚ ˚

φop

ψop

φop

ψop

commutes. Which says exactly that the opposite group is also commutative. This is slight overkill
though: if G is commutative, then G “ Gop.

Definition 1.3.2. Given a category C, a category D is a subcategory of C if and only if every object
of D is also an object of C and for any A,B P Ob pDq, HomDpA,Bq Ă HomCpA,Bq. (We again ignore
that these may not be sets.)

If, for all A,B P Ob pDq we have, in fact, that HomDpA,Bq “ HomCpA,Bq then D is called a full
subcategory of C.

Examples. 1. The category whose objects are P pNq and whose morphisms are increasing functions,
is a subcategory of Set. It is not full, since in Set decreasing functions are also morphisms.

2. AbGrp is a full subcategory of Grp.

3. For a group G considered as a category, any subgroup of G is a subcategory. Not every subcat-
egory of G defines a subgroup, however, because they need to contain inverse morphisms.

1The group with the same elements and the operation g ¨op h “ h ¨ g
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Our last construction shows again how we are trying to move away from our study of objects
themselves and instead moving our attention to the behaviour of morphisms. Particularly, to study
an object in a category, it may be useful to study the morphisms for which it is the codomain.

Definition 1.3.3. Let C be a category and let B P Ob pCq. The Slice category C{B of the C over B
has as its objects all the morphisms in C that have codomain B. Objects in this category thus have
the form f : X ÝÑ B for some X P Ob pCq.

So what are is HomC{Bpf : X ÝÑ B, g : Y ÝÑ Bq? The obvious choice is some selection of
morphisms in HomCpX,Y q. Since these two maps in some way put X and Y in B, we choose our
morphisms to preserve this. In other words, arrows from f to g are morphisms φ : X ÝÑ Y such that

X Y

B

φ

f g

commutes.
As we’ve seen in the covering spaces example, these triangles compose happily by function compo-

sition.

Example. It is not a coincidence that these triangles also appeared when we constructed CovX for
a topological space X. CovX is a full subcategory of the slice category Top{X. Note that not all the
objects of Top{X are in CovX, since not every continuous map f : Y Ñ X defines a covering map.

This is also a perfect opportunity to see an example of a "co-" construction. Given the definition
of the slice category, C{B, we can define the coslice category B{C by looking at arrows going in the
opposite direction.

Definition 1.3.4. Let C be a category and let B P Ob pCq. The Coslice category B{C of C under B
has as its objects all the morphisms in C that have domain B. Objects in this category thus have the
form u : B ÝÑ X for some X P Ob pCq.

The morphisms HomB{Cpu : B ÝÑ X, v : B ÝÑ Y q are then α : X ÝÑ Y such that

B

X Y

u v

α

commutes.

Example. Let us quickly consider what the category t˚u{Top looks like, with t˚u a discrete space of
one element.

The elements of this category are maps u : t˚u Ñ X for topological spaces X. Each of these maps
pick out a specific element of the space they map to. Let us write xu “ u pt˚uq P X for the element of
X that u chooses.

What are the morphisms in this category? Let us take u : t˚u Ñ X and v : t˚u Ñ Y . Then for a
function α : X Ñ Y to be a morphism between these two arrows in t˚u{Top we must have

α ˝ u “ v

which means exactly that
α pxuq “ α ˝ u p˚q “ vp˚q “ xv

and thus a continuous map α is in Homt˚u{Toppu, vq if and only if it preserves the designated point.
In other words, t˚u{Top is isomorphic (a term we will give a precise definition to in section 2.1) to
Top˚, the category of pointed topological spaces.

1.4 From Objects to Morphisms
We are now in a position where we can start to really focus on the first change in perspective that
categorisation allows us. In this section, we are going to focus on generalising constructions, from
injective functions to products of sets, in a way that will allow us to stop trying to study the elements
of objects and instead turn our focus to morphisms. This allows us to study these constructions in
categories where the objects are not sets, or where the morphisms don’t look like set functions. From
here, our definitions are drawn from [6] unless stated otherwise.
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1.4.1 Injectivity and surjectivity
When we define injectivity and surjectivity for the first time, it is always done within the context of
how they act on elements.

Recall. A function f : X Ñ Y is injective if and only if for all a, b P X,

fpaq “ fpbq ùñ a “ b.

It is surjective if and only if for all y P Y , there is a P A such that fpaq “ y.

In an intuitive way, injections remember where the elements from the domain go, whilst surjections
may mix up the domain, but they see everything in the range. The set of elementary propositions we
prove about these functions included two equivalent definitions.

Recall. A function f : X Ñ Y is injective if and only if for any functions φ, ψ : AÑ X, for a set A,

f ˝ φ “ f ˝ ψ ùñ φ “ ψ.

It is surjective if and only if for for any functions α, β : Y Ñ B, for a set B,

α ˝ f “ β ˝ f ùñ α “ β.

As category theorists, this definition is much more appealing. It still encodes that same information
as before but now we are talking exclusively in terms of functions and compositions. Our generali-
sations of these ideas then use exactly these definitions. The analogue of an injective function is a
monomorphism, whilst that of a surjective function is an epimorphism.

Definition 1.4.1. Let C be a category, let X,Y P Ob pCq and let f : X ÝÑ Y be a morphism.
f is called a monomorphism, or monic, if, for any A P Ob pCq and morphisms φ, ψ : A ÝÑ X,

f ˝ φ “ f ˝ ψ ùñ φ “ ψ.

f is called an epimorphism, or epic, if, for any B P Ob pCq and morphisms α, β : Y ÝÑ B,

α ˝ f “ β ˝ f ùñ α “ β.

Examples. 1. In a lot of familiar categories where the morphisms are set functions of some kind,
the monomorphisms are just injective functions, whilst epimorphisms are surjective functions.
This is true in Set, Grp, Top and others.

2. In our favourite category CovX of covering spaces over a topological space X this remains true.

3. We should not be too eager though. In Ring, it is not the case that epimorphisms need to
be surjective. If R is an integral domain and KpRq is its field of fractions, then the inclusion
R ãÑ KpRq is an epimorphism as maps on KpRq are determined by where they take R. However,
if R is not a field, this map is not surjective. This map is also a monomorphism, and so is a
counterexample to the intuitive assumption that morphisms that are both monic and epic must
be isomorphisms. In fact, this is only true in some categories.

4. Even a slight change to our category can change what morphisms are epic and monic. In the
category HauTop of Hausdorff topological spaces with continuous maps, epimorphisms need not
be surjective. Any continuous map with a dense image is epic.

1.4.2 Final and Initial Objects
This particular definition is not about taking an a definition we have and categorising it, but instead
about noticing similar objects in a few categories we are familiar with. In each of Set,Top,Grp and
Ring, we have objects that are in some way canonically mapped into every other object of the category.
In Grp, one such object is the trivial group. Given a group G, there is exactly one homomorphism
t0u Ñ G. In Ring, Z plays a similar role: for any ring R there is exactly one ring homomorphism
ZÑ R. In Set the object is the empty set, and in Top it is the empty space.

Definition 1.4.2. In a category C, an object A P Ob pCq is called an initial object if and only if for
every other object B P Ob pCq there is exactly one morphism f : A ÝÑ B.
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Remark. Initial objects are unique up to unique isomorphism. If A and A1 are both initial objects in
C, not only is there an isomorphism f : A ÝÑ A1 but there is only this one. This follows from the
fact that all of HomCpA,Aq, HomCpA,A

1q, HomCpA
1, Aq and HomCpA

1, A1q contain exactly one arrow
each. We then may write of the initial object in a category to refer to any one, even if there may be
more. As elsewhere, isomorphic objects are in some way equivalent.

What about the dual notion? This would be an object such that every other object has exactly
one arrow to it. We are already well-aware of objects like this: there is exactly one way to map a set
to a chosen singleton, a ring to the ring of one element, or to map any space to the point space. In
fact, there is exactly one way to map any group to the trivial group.

Definition 1.4.3. In a category C, an object Z P Ob pCq is called a terminal object if and only if for
every other object Y P Ob pCq there is exactly one morphism φ : Y ÝÑ Z.

Remark. An initial object in C is a terminal object in Cop and visa versa, so we can transfer the result
from above: terminal objects are unique up to unique isomorphism.

Examples. 1. Note that a category doesn’t need to have initial or terminal objects. The category
Field of fields doesn’t have either.

2. In a poset, an initial object is exactly a least element, an object that is less than or equal to
every element of that poset. The same is true for a terminal object and a greatest element.

3. We again return to our favourite category CovX . Consider the empty cover which is the one
mapHÑ X. For any cover p : Y Ñ X, there is exactly one mapHÑ Y , and the below triangle
commutes. Thus the empty cover is an initial object of CovX .

H Y

X

p

Note that there is exactly one map φ : Y Ñ X such that

Y X

X

φ

p 1X

commutes, namely φ “ p. Thus 1X : X ÝÑ X is a final object in CovX .

We can imagine a category with an initial object in some way starting there, where it branches off
with an arrow to each object. Similarly a category with a final object in some way finishes there. No
matter the mess of arrows amongst the objects, they all come together in exactly one way at the final
object.

1.4.3 Products, Universal Properties and a Glimpse of the Future

In many of the categories of algebraic objects that we are familiar with, there is a sense of taking
products. We are comfortable taking the Cartesian product of sets, the direct product of groups and
the product of topological spaces. This is a perfect opportunity to exercise our new-found category
theoretical language.

The key piece of information that the above examples of products have in common is that each
element in the product, say X ˆ Y has an associated projection to each of X and Y . Crucially, the
element is determined entirely by where it projects. What this tells us is that choosing an element of
the product X ˆ Y is equivalent to choosing both an element of X and an element of Y ; to define a
function from some object f : Z Ñ X ˆ Y , it is necessary and sufficient, to give functions fX : Z Ñ X
and fY : Z Ñ Y such that f “ pfX , fY q. Calling the projections from X ˆ Y onto X and Y πX
and πY respectively, that last statement says that πX ˝ f “ fX and πY ˝ f “ fY . This is a property
characterised entirely by morphisms and composition, which should be very appealing to us as category
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theorists. We should note a good opportunity for a commuting diagram:

X

X ˆ Y Z

Y

πX

πY

D!f

fX

fY

Definition 1.4.4. Let C be a category, and let tXiu be a collection of objects in C. The product of
tXiu is an object, denoted by

ś

Xi or
Ś

Xi, along with a collection of morphisms tπj :
ś

Xi ÝÑ Xju

with the property that for any Z P Ob pCq with a collection of morphisms tfj : Z ÝÑ Xju there exists
a unique f : Z ÝÑ

ś

Xi such that πj ˝ f “ fj for all j.

When we use f , we may choose to refer to it as pfiq or pf1, f2, f3 . . .q, to remember these component
functions. A finite case can be illustrated with the help of a commutative diagram:

X1

X2

ś

Xi Z

...

Xn

π1

πn

f1

D!f

fn

.

This product is unique up to unique isomorphism and the examples of products we’ve seen before
match, which is to say that this property is sufficient to characterise all the products we have seen
before. It is an example of a universal property, the universal property of the product. They appear in
exactly the form above, a way of characterising an object and collection of morphisms by the existence
of unique morphisms that make diagrams commute. It is not the only one we have seen: the definition
of initial and final objects looked very similar to this. In fact, the presence of ’unique up to unique
isomorphism’ at the beginning of this paragraph should be jumping out as a call-back to those objects.
We will see that the product is a very specific instance of a much more general construction, that of a
limit, and that limits are indeed final objects in a certain category, but let’s not get ahead of ourselves,
there’s more building to do.

The dual construction is called, as we would expect, the coproduct:

Definition 1.4.5. Let C be a category, and let tXiu be a collection of objects in C. The coproduct
of tXiu is an object, denoted by

š

Xi, along with a collection of morphisms tqj : Xj ÝÑ
š

Xiu with
the property that for any Z P Ob pCq with a collection of morphisms tgj : Xj ÝÑ Zu there exists a
unique g :

š

Xi ÝÑ Z such that g ˝ qj “ fj for all j.

The corresponding diagram then being

X1

X2

š

Xi Z

...

Xn

q1 g1

D!g

qn gn

.

The coproduct seems to be about gluing the objects together. That the coproduct acts like an
initial object, suggests that the coproduct is in a sense the ’smallest’ gluing, but it also can’t have
too much overlap between the images of each Xi, as we can ask for two necessarily distinct arrows
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g :
š

Xi ÝÑ Z and g1 :
š

Xi ÝÑ Z that have gi “ g1i for all i but one. Common examples of
coproducts then are the disjoint union of sets, or topological spaces, where no overlap is possible, or
the wedge sum of pointed topological spaces, where overlap is necessary at only the one point.

Example. Let us return again to CovX . The category has both finite products and finite coproducts.
The coproduct of two covering spaces pY : Y Ñ X and pZ : Z Ñ X is the map p : Y

š

Z Ñ X which
takes y to pY pyq if y P Y and pZpyq otherwise, with the standard injections for Y and Z.

The product is a little bit more difficult. We may be tempted to consider the normal product of
topological spaces, and to invent some map pYˆZ : Y ˆZ Ñ X, but very rarely does this give rise to a
covering space of X (although it does give a covering space of XˆX). The issue with the space Y ˆZ
is that there is too much freedom, but the built in projections are handy so we may hazard a guess that
we are interested instead with a subspace. Then we are looking for an appropriate subspace, which we
will for the moment notate as Y

ś

Z, and a map p : Y
ś

Z Ñ X. We want the two projections to be
morphisms in CovX , so we need that

Y Y
ś

Z Z

X

pY

πY πZ

p
pZ

.

commutes. Thus we must have that

Y
ź

Z Ď tpy, zq P Y ˆ Z | pY pyq “ pY pπY py, zqq “ pZ pπZ py, zqq “ pZ pzqu

and we will show in section 3.3 that Y
ś

Z is exactly this set with the covering defined in the diagram.
So the product in CovX of two covering spaces pY : Y Ñ X and pZ : Z Ñ X is the covering space

p : tpy, zq P Y ˆ Z | pY pyq “ pZ pzqu Ñ X given by p py, zq “ pY pyq p“ pZ pzqq.

1.5 The Category of Separable Algebras over a Field
We are now at a point where we may introduce our next important category, the category of sepa-
rable algebras over a field k. A revision of the necessary definitions and theorems can be found in
appendix A.1.

Definition 1.5.1. Fix a field k. The category of k-algebras, denoted kAlg, has objects k-algebras and
morphisms k-algebra homomorphisms.

The full subcategory of separable k-algebras will be denoted kSAlg.

Given that we are now fairly adept at understanding the basics of categories, we are going to make
things more difficult for ourselves here, with the additional information that what we are doing will
become relevant later. To our list of favourite categories, currently containing only CovX , we are
going to add the opposite of kSAlg, kSAlgop.

This offers a good opportunity to study the constructions of section 1.4 in opposite categories.

Example. Let us investigate what final and initial object look like in this category. Since we construct
the opposite category by reversing all the arrows in the original, the property that the initial object
has, that it has exactly one arrow to every object, becomes that every object has exactly one arrow
to it. Hence a final object in kSAlgop would be an initial object of kSAlg and an initial object in
kSAlgop would be a final object in kSAlg. Our question, then, becomes whether kSAlg has final and
initial objects.

Note that k is made into a k-algebra by the map 1k : k Ñ k. For any k-algebra there is exactly one
ring homomorphism φ : k Ñ B such that

k

k B

1k fB

φ

.

commutes. That is φ “ fB , so k is the initial object in kAlg. Since it is separable (and, crucially,
kSAlg is a full subcategory of kAlg), it is the initial object in kSAlg and thus it is the final object in
kSAlgop.

On the other hand, there is exactly one ring homomorphism from any k-algebra to the zero algebra
k0 :“ t0u and it is also an algebra homomorphism. k0 is the final object of kAlg. Since it is separable,
it is also the final object of kSAlg and thus it is the initial object of kSAlgop.
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Example. As we’ve seen in section 1.4.1, epimorphisms of rings are not simply surjective ring ho-
momorphism and their classification is actually rather difficult. This behaviour transfers here and
consequently it is hard for us to say anything about the monomorphisms in kSAlgop.

Monomorphisms of rings are much nicer:

Claim. The monomorphisms in Ring are exactly the injective ring homomorphisms.

Proof. Injective functions are certainly monomorphisms. On the other hand, let φ : R Ñ S be a ring
monomorphism. Let us take r P Kerpφq and evr, ev0 : RrXs Ñ R be the two homomorphisms which
evaluate polynomials at r and 0 respectively. Then

φ ˝ evr “ φ ˝ ev0

so evr “ ev0, which finally gives us

r “ evrpXq “ ev0pXq “ 0.

Morphisms in kAlg which are monic ring homomorphisms keep this property and in fact these are
the only monomorphisms in kAlg. This can be seen in a very similar way to the above proof, replacing
RrXs with krXs. Full subcategories inherit monomorphisms and so the injective morphisms are the
monomorphisms in kSAlg. So our conclusion is that the epimorphisms in kSAlgop are the morphisms
corresponding to the injective morphisms in kSAlg.

Example. The last constructions we are familiar with are products and coproducts. We approach
these similarly to the last examples by considering what they look like in kAlg.

In kAlg the product of two k-algebras R and S is just the product of the underlying rings, Rˆ S
equipped with the structure map

pfR, fSq : k Ñ Rˆ S

a ÞÑ pfR paq , fS paqq .

Note that if B and C are both separable k-algebras, then by theorem A.1.5 there exist finite sets
tBiu

t
i“1 and tCjunj“1 of finite separable field extensions of k such that B –

śt
i“1Bi and C –

śn
j“1 Cj .

Then B ˆ C –
śt
i“1Bi ˆ

śn
j“1 Cj so is isomorphic to a finite product of separable field extensions

of k. Thus, again by theorem A.1.5, it is a separable k-algebra. Thus, again because kSAlg is a full
subcategory of kAlg, the product of B and C in this category is B ˆ C and this is the coproduct in
kSAlgop.

The coproduct in kAlg is the tensor product.

In this chapter we have laid out the basics of category theoretic language. We have outlined what
a category is, and with the assistance of commutative diagrams, have begun to unite some common
objects amongst the categories we have seen under powerfully general definitions. Most importantly,
we have begun to think in terms of morphisms instead of elements and functions. We will continue with
this in chapter 2, moving on to functors, which are how we set up correspondences between objects in
categories whilst preserving commutative diagrams, and how these allow us to build limits. With all
this machinery set up, we will be able to see our first major category-theoretic construction, that of
Galois categories. Our prototypical examples of these will be FinSet, CovX and a new category that
we will be using the next chapter to define, the category of separable k-Algebras for some field k.
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Chapter 2

Functors, Natural Transformations
and Limits

2.1 Functors

We return to categories with a singular purpose. Our investigations in the chapter 1 set us looking at
the relationships arrows between objects reveal but we’ve consistently been ’looking inside’ categories.
Now, with a toolkit of definitions and examples, we can set up the machinery to look at how categories
refer to one another.

Definition 2.1.1. Let C and D be categories. A (covariant) functor from C to D, which we shall
denote as F : C Ù D consists of

1. A mapping Ob pCq Ñ Ob pDq

A ÞÑ FA

constructing an object in D for every object in C.

2. Mappings HomCpA,Bq Ñ HomDpFA,FBq

f ÞÑ Ff

for any A,B P Ob pCq.

with two conditions:

(i) For any object A P Ob pCq, F1A “ 1FA.

(ii) F is functorial. This means that if f : A ÝÑ B and g : B ÝÑ C are morphisms in C, then

F pg ˝ fq “ Fg ˝ Ff (2.1)

where the composition on the left is in C and the composition on the right is in D.

Equation 2.1 says that if

A B

C

f

h
g

commutes, then so does

FA FB

FC

Ff

Fh
Fg .

In fact, this is exactly the condition that if a diagram commutes in C, then the diagram in D we get
by applying F to all the objects and morphisms also commutes.

Definition 2.1.2. A contravariant functor from C to D is a covariant functor from C to Dop, or
Cop to D. These definitions are equivalent and amount to all the same things as the definition above
except that in the second part the mappings are HomCpA,Bq Ñ HomDpFB,FAq and in the second
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condition we take instead that F pg ˝ fq “ Ff ˝ Fg. When we refer to functors, we will always be
talking about the covariant ones unless mentioned. So if

A B

C

f

h
g

commutes in C, then, if F is contravariant, so does

FA FB

FC

Ff

Fh
Fg .

Examples. Constructing a functor, then, is the process of using the objects of one category to con-
struct objects of another, in such a way that we can keep information about relationships between
objects.

1. Any category has an identity functor 1C : C Ù C which takes every object and every morphism
to itself.

2. Given two functors F : C Ù D and G : D Ù E, we may form their composition GF : C Ù D.

3. If D is a subcategory of C, then there is an inclusion functor D ÝÑ C that takes each object
and morphism to itself in the larger category.

4. A lot of familiar categories, Grp, Top, Ring, have objects that are sets with structure and
morphisms that are set functions with structure. Then we may define functors from these to
Set, called forgetful functors, which forget the structure. For example we may take a group to
its set of of elements, and leave the homomorphisms as functions.
Forgetful functors don’t need to be to Set. We could construct a forgetful functor from CovX to
Top that forgets that the space is covering X or from kAlg to Ring which forgets the k-algebra
structure of a ring.
These are closely related to free functors (by a process called adjunction. These take sets to the
free objects in codomain category that are generated by them. For a set S, the free group on S,
free R-module on S for some ring R or discrete topological space with underlying set S are all
examples. Maps between sets induce maps between generators in the codomain category.

5. A great deal of category theory development originated in the study of algebraic topology. In
this, we are concerned with finding algebraic objects associated with spaces which give insight
on their topology. This is exactly the process of setting up and studying appropriate functors
Top Ù Grp or to other algebraic categories.
Finding the fundamental group on pointed spaces is a functor π1 : Top˚ Ù Grp, taking pointed
continuous functions to group homomorphisms. Homology studies particular functors from Top
to a category of chain complexes, cohomology is similar but the functors are contravariant. Each
of these also define a number of functors from Top to AbGrp.

6. An example which will be of great importance in chapter 5 is that of Hom functors. Let C be a
locally small category. Then, for every A P Ob pCq, C gives us a functor

HomCpA,´q : Ob pCq Ñ Ob pSetq

B ÞÑ HomCpA,Bq

which maps an arrow f : B ÝÑ C to

HomCpA, fq : HomCpA,Bq Ñ HomCpA,Cq

g ÞÑ f ˝ g.

We may also define in the same way a contravariant functor HomCp´, Bq : C Ù Set for an object
B, which would be a covariant functor opcatC Ù Set.
Both of these are functors given to us for free by C itself. They are vastly useful for studying
the internal structure of some categories, as well as for studying other functors on C.

18



7. We might want to consider a functor that picks out the solutions to sets of equations from
algebraic objects. For example, I may define a functor F : Ring Ù Set that takes a ring R
to the set of invertible elements of R. Any ring homomorphism takes invertible elements to
invertible elements, so we can just let F act on f : R ÝÑ S by restricting f to Rˆ.

We could do the same thing for picking out roots of unity, or nilpotent elements, and we don’t
need to be talking about solutions in a ring, but can instead generalise to work with solutions in
k-algebras, for some field k. A key observation that we will formalise later, and which will fuel
the invention and study of affine group schemes in chapter 5, is that in many cases this action
of ’picking out solutions to a set of equations’ in a k-algebra can be done instead by looking
at algebra homomorphisms into it from some other k-algebra. In other words, our functor F is
doing a very similar thing to some Hom functor Hom

kAlgpA,´q for some k-algebra A.

8. Returning to our familiar categories, there are two functors that will be of more use in the
immediate future. They involve our two favourite categories: CovX and kSAlgop, and both go
to FinSet. In chapter 4, we will show these are our two main examples of Galois categories, and
that these functors are fundamental to this structure.

Let X be a topological space, and let x be some point in that space. Then we define a functor

Fx : CovX Ù FinSet.

It maps the objects of CovX by

pp : Y Ñ Xq ÞÑ p´1 pxq .

and we note that if we have a morphism of covering spaces f : Y Ñ Z from pY : Y Ñ X to
pZ : Z Ñ X, then pY “ pZ ˝ f . So if y P p´1

Y pxq then fpyq P p
´1
Z pxq and we can define

Fxf “ fæp´1
Y pxq

: p´1
Y pxq Ñ p´1

Z pxq

y ÞÑ fpyq

Clearly Fx maps identity morphisms to identity morphisms, and it is functorial because for any
functions g ˝ hæA “ gæB ˝ hæA if hpAq Ă B, so this is a functor. It may seem like an arbitrary
choice, but covering spaces are fundamental in algebraic topology exactly because the way fibres
of different covering spaces map between each other contains information about the shape of the
base space. It is in fact this behaviour we generalise in our formalisation of Galois categories.

On kSAlgop, we look for a functor kSAlgop
ÝÑ FinSet, which is just the same a contravariant

functor kSAlg ÝÑ FinSet. We are in luck: kSAlg is a locally small category, and so we return to
example 4 and find a nicely behaved contravariant functor is the Hom functor Hom

kSAlgp´, Bq
for some separable k-algebra B. When we return to it, we will use Hom

kSAlgp´, k̄q which is
contravariant from kSAlg to FinSet, because Hom

kSAlgpB, k̄q is always finite.

The presence of identity functors and an associative way of composing them is a hint at the fact
that we might want to study a category that has certain categories as objects and functors as arrows.
There is a lot of structure to build there, and a lot to be said about such categories but we won’t be
touching on them here. However, it does motivate one definition:

Definition 2.1.3. Given two categories, C and D, a functor F : C Ù D is called an isomorphism of
categories if it admits an inverse: a functorG : D Ù C withGF “ 1C : C Ù C and FG “ 1D : D Ù D.
In this case, we say that C and D are isomorphic.

Example. We noted in the example at the end of section 1.3 that the category Top˚ of pointed
topological spaces and the coslice category t˚u{Top are isomorphic.

Note that this is a very strong condition. We ask that all the objects and morphisms of the two
categories are in direct one-to-one correspondence with one another. In fact, this might actually be
too strong for our purposes. Early on in our study of finite dimensional vector spaces on R, we learn
that any of these spaces of a given dimension n are isomorphic. This means that all the information
about the spaces in this category can be discovered with reference only to the spaces Rn. This suggests
that in some way the category of finite R-vector spaces and the category with objects Rn and linear
maps as arrows contain the same data but they are certainly not isomorphic. We will develop a better
definition, that of equivalence of categories, in section 2.4, but we’ll need some new machinery first.
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2.2 A New Perspective on Diagrams
It is worth remembering our examples of categories so far have been rather complicated. We can
construct a category C1 with exactly two objects and exactly two non-equal morphisms from one to
the other, which looks like ‚ ‚ . Perhaps we define a category C2 with three objects and the
only non-identity arrows being exactly those in this diagram:

‚ ‚

‚

that compose so as to make diagram commute. For some category D, What do functors F1 : C1 Ù D
and F2 : C2 Ù D look like? F1 must pick two objects A,B P Ob pDq and two morphisms, f, g P
HomDpA,Bq. In other words, it gives us a diagram

A B
f

g

Note that these morphisms do not need to be equal, though they could be. On the other hand, F2 must
pick three objects in D, and it must pick arrows between them in the arrangement of that diagram.
Lastly, the corresponding diagram in D must commute. On the other hand, if I have a commutative
diagram in D

A B

C

f

h
g (2.2)

then I can define a functor F2 : C Ù D exactly as we would expect. The fact that eq. (2.2) commutes
in D means that F2 is functorial. Finding a commutative diagram of this shape is exactly the same as
finding a functor F2 : C Ù D.

We may go further than this. When we first defined a diagram in a category, we did so as a directed
multigraph where the vertexes are objects of the category and the edges are morphisms. If we take the
underlying directed multigraph, we may make a category that consists of vertexes as objects, edges as
arrows and then with the addition of identity arrows and arrows where ever composition is possible.

Definition 2.2.1. Given a directed multigraph Γ, the free category generated by Γ is the category with
objects V pΓq and with arrows between two vertexes being any directed path between them, composed
by concatenation.

and our discussion of F1 and F2 generalises to the statement

Theorem 2.2.2. There is a correspondence between diagrams in a category C in the shape of Γ and
functors from the free category generated by Γ to C.

However, we are unnecessarily restricted by the fact that these free categories must be small, and
we have the additional problem that these directed multigraphs don’t encode any information about
composition. This motivates a revisited definition of diagrams which is in part justified by the theorem.

Definition 2.2.3. Let C and J be a categories. A diagram of type J in C is a functor D : J Ù C.
We call J the index category of D.

This allows us to approach all the same diagrams before, but now we may also consider diagrams of
large type, or diagrams that encode certain rules of composition like in F2 above. Further improving
on our approach of trying to look at objects less, statements like ’for any two objects in C’ can be
converted into statements like ’for any diagram of shape ‚ ‚’. When we introduce limits and colimits
in chapter 3, of which products, coproducts and terminal objects are examples, this new definition of
diagrams will be crucial.

2.3 Natural Transformations
In the same way that functors were defined because we want to understand how different categories
may relate to one another, we may notice that certain functorial constructions are also related to one
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another. We may observe the result in algebraic topology that the first homology group of a topological
space X is isomorphic to the abelianisation of the fundamental group of X. Further, when our functors
turn continuous maps into homomorphisms of these groups, they do so in a way that is compatible with
the abelianisation. Constructing the double dual of a vector space V comes with a way of injecting
V into V ˚˚, which means that the functor that constructs V ˚˚ is related ’in a natural’ or ’canonical’
way to the identity functor that just leaves V alone. Similarly, this behaves nicely with the how linear
maps are dualised. These connections are valuable not just because the objects themselves map to each
other nicely, but also because morphisms map nicely too. The following definition lets us formalise
this ’naturality’.

Definition 2.3.1. Let C and D be categories. Let G,F : C Ù D be functors.
A natural transformation from F to G, notated as α : F ñ G, consists of a collections of morphisms

in D, indexed by the objects of C, αA : FA ÝÑ GA with the following naturality condition:
For any A,B P Ob pCq and any morphism f : A ÝÑ B, the following diagram commutes in D

FA GA

FB GB

αA

Ff Gf

αB

(2.3)

Breaking down this definition, a natural transformation gives us a way of moving via morphisms
from the image of one functor to the image of another, whilst eq. (2.3) tells us that these morphisms
must behave well with how the functors transform arrows.

Examples. 1. For any functor F : C Ù D, then there exists an identity natural transformation,
denote 1F : F ñ F , whose morphisms are all identity morphisms.

2. Let us formalise our dual spaces example. First, some preliminaries:

Definition 2.3.2. Fix a field k. Then define the category of k-vector spaces, Vectk, to have
k-vector spaces as its objects and linear maps as morphisms.

For a k-vector space V , the dual of V , notated by V ˚ is the set HomVectkpV, kq. This set is itself
a k-vector space. If we have a linear map f : V ÝÑW then this induces a linear map, called the
transpose of f , f˚ : W˚ ÝÑ V ˚, which takes φ : W ÝÑ k to φ ˝ f : V ÝÑ k.

V W

k

f

f˚pφq φ

Since
pf1 ˝ f2q

˚pφq “ φ ˝ pf1 ˝ f2q “ pφ ˝ f1q ˝ f2 “ f2
˚
pφ ˝ f1q “ f2

˚
˝ f1

˚
pφq

this is functorial so we have a functor p´q˚ : Vectk Ù Vectop
k (or indeed Vectop

k Ù Vectk)

We can meaningfully define p´q˚˚ : Vectk Ù Vectk as the composition of p´q˚ with itself.

Definition 2.3.3. The functor p´q˚˚ : Vectk Ù Vectk takes a vector space V to the dual of its
dual. Let f : V ÝÑW be a linear map. Then f˚˚ :“ pf˚q˚ : V ˚˚ ÝÑW˚˚.

What does f˚˚ look like? An element of V ˚˚ is a linear map φ : V ˚ ÝÑ k, and f˚˚pφq “ φ ˝ f˚.
This gives an element of W˚˚, a linear map W˚ ÝÑ k. Explicitly, given a linear µ : W ÝÑ k,

f˚˚pφqpµq “ φ ˝ f˚pµq “ φpµ ˝ fq.

To define a natural transformation between 1Vectk and p´q˚˚, we see from definition 2.3.1 that
for any k-vector space V we need a linear map αV : V ÝÑ V ˚˚. This whole example is motivated
by the fact that there seems to be an obvious way to do this.

An important class of elements in V ˚˚ are the evaluation maps. If v P V then the map
evalv : V ˚ ÝÑ k takes µ : V ÝÑ k to its value at v, µpvq. Then we define the map

αV : V Ñ V ˚˚

v ÞÑ evalv.
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If V is finite dimensional, this is an isomorphism, but it doesn’t need to be in the infinite
dimensional case.
So our last step then is to see if this is a natural choice. This comes down to checking if this
diagram commutes for any two vector spaces V and W and any linear map f : V ÝÑW ,

1VectkpV q “ V V ˚˚

1VectkpW q “W W˚˚.

αV

1Vectk
pfq“f f˚˚

αW

So let us take an element v P V and follow it around both sides of the diagram. Firstly the top
and right edges:

f˚˚ ˝ αV pvq “ f˚˚pevalvq

and then the left and bottom edges:

αW ˝ fpvq “ evalfpvq.

Given µ PW˚, we have

f˚˚pevalvqpµq “ evalvpµ ˝ fq

“ µ ˝ fpvq

“ µpfpvqq

“ evalfpvqpµq

so
f˚˚pevalvq “ evalfpvq

and the diagram commutes.

3. Given functors F,G,H : C Ù D and natural transformations α : F ñ G and β : Gñ H, we may
make βα : F ñ G by pβαqA “ βA ˝ αA. This composition is associative.

We won’t elaborate on it here, but as in the case of functors the presence of identities and composi-
tion hints at the fact that the category of functorsC Ù D with arrows given by natural transformations
is well defined.

Definition 2.3.4. A natural transformation, for F,G : C Ù D, α : F ñ G is called a natural isomor-
phism if there exists an inverse natural transformation β : Gñ F . This is exactly when each αA is an
isomorphism.

Example. If we only consider the category of finite vector spaces over a field k then the natural
transformation we described above between the identity functor and p´q˚˚ is a natural isomorphism.
This allows us to say that a finite k-vector space is naturally isomorphic to its double-dual.

2.4 Equivalences
Back with definition 2.1.3 we defined an isomorphism of categories but we noted that the conditions
required were particularly strong. Let us use our category theory toolbox to construct a definition
that might suit us better. We certainly are looking for a correspondence of some kind, so given two
categories C and D we would like some conditions on a functor F : C Ù D (and perhaps a second
functor G : D Ù C). The main problem in our example with the category of Rns and linear maps and
the category of VectR was that the same information was contained in any class of isomorphic objects.
Therefore, we might not care if our functor is surjective on objects, we might just want to make sure
that it touches on every isomorphism class.

Definition 2.4.1. A functor F : C Ù D is called essentially surjective if and only if for any B P Ob pDq
there is an A P Ob pCq such that FA – B.

Relaxing the situation for objects means that we now can’t expect to map to every morphism.
However, it doesn’t seem right to consider two categories to be equivalent if one has ’more’ morphisms
than the other. These may contain extra information, since arrows between two objects have no sense
of being isomorphic to one another, so we do need some sort of surjectivity on morphisms.

22



Definition 2.4.2. A functor F : C Ù D is called full if and only if for any A,B P Ob pCq and any
h P HomDpFA,FBq, there is some f P HomCpA,Bq such that Ff “ h.

In section 1.3 we defined a full subcategory. We can see now that a full subcategory is exactly a
subcategory for which the inclusion functor is full.

The last condition we need is similarly some sort of injectivity on morphisms. In a similar way to
with fullness, we don’t want two morphisms in our first category to contain the same information as
one in the second.

Definition 2.4.3. A functor F : C Ù D is called faithful if and only if for any A,B P Ob pCq and any
f, g : A ÝÑ B, Ff “ Fg implies that f “ g.

In locally small categories, fullness and faithfulness are exactly surjectivity and injectivity on Hom
sets.

With these conditions we have enough information to define an equivalence of categories.

Definition 2.4.4. Let C and D be categories. We say C is equivalent to D, written as C » D, if
there exists a functor F : C Ù D that is essentially surjective, full and faithful.

There is something unsatisfying about this definition. In all the categories we’ve dealt with, when we
defined isomorphisms, the closest things we have to equivalences, we surmised this idea of ’containing
the same information/structure’ concisely with reference to inverses, whereas here we are left with a
list of conditions. It isn’t even immediately obvious that C » D implies that D » C, a property that
we certainly want.

So let us try a different approach. Instead of a single functor let us take two, F : C Ù D and
G : D Ù C. If we were requiring that these categories were isomorphic, we would want these functors
such that GF “ 1C and FG “ 1D. We want to weaken this in such a way that we aren’t actually
losing any information. We do not need these compositions to be equal to the identities, we only need
them to contain the same information and our discussion about natural transformations has given us
exactly the vocabulary to define this.

Definition 2.4.5. Let C and D be categories. An equivalence between C and D is a quadruple
pF,G, α, βq where F : C Ù D and G : D Ù C are functors and α : 1C ñ GF and β : 1D ñ FG are
natural isomorphisms. F and G are said to be weak inverses. If we have such an equivalence, we write
that C and D are equivalent, written C » D.

Proposition 2.4.6. Given a equivalence of categories between C and D, pF,G, α, βq, F is full, faithful
and essentially surjective. On the other hand, if we have a full, faithful and essentially surjective
F : C Ù D, we can construct an equivalence pF,G, α, βq, assuming a sufficiently strong axiom of
choice.

Proof. We only prove the first statement, since it is enough to show that our new definition is at least
as strong as our first one. The proof of the second can be found in [2].

Let us take an equivalence pF,G, α, βq.
Take A,B P C and let f, g : A ÝÑ B with Ff “ Fg. Then GFf “ GFg. By the naturality of α,

we have the commutative diagram

A B

GFA GFB

f

αA – αB –

GFf

and, since αA is an isomorphism, can see that

f “ α´1
B ˝GFf ˝ αA “ α´1

B ˝GFg ˝ αA “ g

so F is faithful. By the same method, G is also faithful.
Now let h : FA ÝÑ FB and define f “ α´1

B ˝Gh ˝ αA P HomCpA,Bq.

A B

GFA GFB

f

αA – αB –

Gh

23



But we note then that this means Gh “ αB ˝ f ˝ α
´1
A “ GFf , and G is faithful, so h “ Ff and we

have that F is full.
Finally, given B P Ob pDq, we have the isomorphism βB : B

„
ÝÝÑ FGB so F is essentially surjective.

Examples. 1. Let’s take k to be a field and consider the category finVectk of finite k-vector
spaces and its opposite finVectop

k . We already have functors p´q˚ : finVectk Ù finVectop
k and

p´q˚ : finVectop
k Ù finVectk (with a slight abuse of notation) and in the examples above we

defined a natural transformation between 1
finVectk and p´q˚˚ : finVectk Ù finVectk. In the

same way, may find one between 1
finVectop

k
and p´q˚˚ : finVectop

k Ù finVectop
k . Thus we find

finVectk » finVectop
k .

2. To formalise our motivating example of Rn, we’ll work in the more general environment of
finVectk again. Let us define a new category, which we will call Matk. We let ObpMatkq “ N0

and define HomMatkpn,mq to be the set of all m ˆ n matrices with coefficients in k. An arrow
with domain n is just a matrix with n columns, and an arrow with codomain l is just a matrix
with l rows, and so we can define composition of arrows as multiplication of the matrices.

For example, here is a diagram in MatR

1 2 . . . 4pπq

´

7 0
¯

´

7e 0 14 7
¯

¨

˝

e 0 2 1

3 1 1 19

˛

‚

¨

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 1
2 0

0 0 0 0

0 0 1 1

˛

‹

‹

‹

‹

‹

‚

where the two blue matrices have been composed to make the red one.

Our original statement was inspired by the fact that all finite-dimensional R-vector spaces are
isomorphic to Rn for some n. In fact, we have the stronger result that every finite-dimensional
k-vector space is isomorphic to kn for some n.

Proposition 2.4.7. Let k be a field. Then the category Matk is equivalent to any category
finVectBk of finite dimensional k-vector spaces where an ordered basis BV has been chosen for
each space V .

Proof. Let us define a functor F : Matk Ù finVectBk which takes n to kn and which takes a
matrix A P HomMatkpn,mq to the linear map TA : kn Ñ km which is given by A in the bases
Bkn and Bkm . The one-to-one correspondence between matrices and linear maps gives that F is
full and faithful, which the isomorphisms between n-dimensional spaces and kn given that it is
essentially surjective.

If we were to use our second definition of an equivalence, we could define G : finVectBk Ù Matk
which takes a space V to dimpV q P N and any linear map map between spaces to the corre-
sponding matrix in their bases. Then we note that GF : Matk Ù Matk “ 1Matk and that
FG : finVectBk Ù finVectBk takes an n-dimensional vector space V to kn and a linear map from
an n-dimensional space to an m-dimensional space to the map kn Ñ km given by the same
matrix.

So α : 1Matk ñ GF and β : 1
finVectBk

ñ FG are just the identity natural transformation, and
the linear isomorphisms βV : V Ñ kn which takes the basis BV to the basis Bkn .

So all that stops the study of finite dimensional k-vector spaces from being the study of matrices
in k is the freedom of choice of basis.
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Chapter 3

Limits and Colimits

We have now seen a number of category-theoretic constructions.They have helped us to notice similar-
ities between categories that go beyond similarities of their objects. The presence of initial objects or
products are important statements about the shape of the category and how its objects relate to each
other. Their definitions were informed by a long list of examples in the familiar categories of algebraic
objects. Each definition, then, looked like ones that we had seen many times before. It was not too
difficult to wrap our heads around category theoretic products because they were defined in much the
same way as direct products, ring products or Cartesian products. However, as category theory was
developed to do, by stepping away from this for a moment, and dealing in some definitions and ideas
that are a little more unfamiliar, we can begin to connect ideas which seem only tenuously similar.

Back in section 1.4.3, in our discussion of products and coproducts, we noticed that the presence of
"unique morphisms" or objects that were "unique up to unique isomorphism" repeated the language
of initial and final objects. We will find, in fact, they are initial and final objects, just not in the
categories where they normally live. They are not the only such constructions. Once we develop the
definitions necessary to make these categories, we will find that all sorts of mathematical objects can
be seen as either initial or final objects in appropriate categories. Wherever we might find ourselves
"gluing" objects in categories, like coproducts but also for quotients of groups, rings and vector spaces,
or when we look for sub-things satisfying some properties, such as the preimage of a set function, the
equaliser of two continuous maps, or a level set of a smooth map on a manifold, we are using colimits
and limits respectively 1.

3.1 Cocones and Colimits

Let us focus, for a moment, on the "gluing" case. As we saw in section 2.2, we may use functors from a
chosen category C to another D as diagrams in the shape of C in D. This is a strong generalisation of
indexing sets with other sets, because not only do functors pick out objects, but they pick morphisms
too and further give us constraints on the composition of these morphisms. So approaching colimits,
particularly given our perspective about "gluing", we begin with a functor, which allows us to choose
objects to glue and, crucially, morphisms along which we will be gluing.

Definition 3.1.1. Let I be an index category and let D : I Ù C be a diagram. A cocone for D
consists of an object C P Ob pCq and for each i P Ob pIq a morphism ci : Di ÝÑ C. Further, if
α : i ÝÑ j P HomIpi, jq, then cj ˝Dpαq “ ci.

Let us consider what this means with help of some examples:

Examples. 1. Let I be the category with two objects and no non-identity morphisms. Then a
diagram D : I Ù C just picks two objects D1, D2 P Ob pCq and a cocone of D consists of an
object C P Ob pCq and choice of morphisms ci : Di ÝÑ C for i “ 1, 2. Since there are no
non-identity morphisms in I, so our last condition is redundant.

2. A more illustrative example, perhaps, is to consider the index category I which looks like
‚ ‚ ‚ . A diagram D : I Ù C then, consists of a choice of three objects and

1Pedagogically, this perspective is explored excellently in [1]
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two morphisms in that arrangement:

D1 D2

D3

f2

f3

So to determine a cocone of this diagram, we need a C P Ob pCq and morphisms for each Di.

D1 D2

D3 C

f2

c1f3 c2

c3

They also need to fulfil our last condition, which is exactly that if we start at an object Di, it
is the same to pass directly to C via ci as to move to another Dj and then along cj . Since the
only non-identity morphisms are the fis, we only need to worry that

c2 ˝ f2 “ c1

and
c3 ˝ f3 “ c1.

In other words, we need the following diagram to commute

D1 D2

D3 C

f2

f3 c3

c2

.

Cocones of D then are exactly these commutative diagrams.

3. If I is the category ‚ ‚ , then diagrams look like D1 D2

f

g
and cocones are simply

maps c : D2 ÝÑ C such that c ˝ f “ c ˝ g.

Remark. The condition in the definition of a cocone seems rather restrictive. We can imagine the more
morphisms and objects we add to I, the hard it would be to find cocones. This intuition is not quite
right, as we will see in section 4.1, but there is a simple case where it fails. If the category C has a
final object Z, then for a diagram D : I Ù C, Z and the unique morphism Di ÝÑ Z for each Di are a
cocone of D

Since we are leaning into the morphism-focused approach, the only way we can evaluate something
like "gluing" is by using morphisms to give some sense of inclusion. Each of the ci morphisms above,
is a way of putting Di into C, and the condition about composition gives us information about where
these copies of Di and Dj must overlap, or be glued. However, we may in this way lay out what must
be included, and what must be glued, but there’s no constraint on how much gluing we do. The third
example above is the most extreme form of this: everything maps into the final object, and it is the
case of gluing everything to everything. So what we are looking for is not just a cocone, but in some
sense a minimal cocone, which glues exactly what we want and no more. Again, we are reminded of
the language of initial objects.

Definition 3.1.2. Let D : I Ù C be a diagram, and let pA, paiqq and pB, pbiqq be cocones of D. A
morphism of cocones from A to B is a morphism e : A ÝÑ B such that e ˝ ai “ bi for every i P I.

So we return to our examples:

Examples. 1. Given two cones A and B, We are looking for a morphism e such that the following
diagram commutes:

D1

A B

D2

a1
b1

e

a2
b2
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2. Again, let A and B, be cones. Then we need e such that this diagram commutes:

D2

D1 A B

D3

a2

b2

f2

f3

e

a3

b3

3. In this case, we want e as below:

D1 D2 B

A

g

f
b

a
e

With morphisms defined, and a simple verification of the axioms, we now have the categories of
cocones over a diagram D : I Ù C.

If C has a final object, then this too forms a final object in the category of cocones of any diagram
into C. We are more interested in the existence of initial objects.

Definition 3.1.3. Let D : I Ù C be a diagram. If it exists, the initial object in the category of cocones
of D is called the colimit of D and is denoted by

lim
ÝÑ

Di.

We say it is a finite colimit if I is a finite category.

As before, it is an abuse of notation to talk of the initial object, or the colimit, but we know that
all initial objects in a category are unique up to unique isomorphism so if we keep this in mind we are
safe. Let us consider our examples above.

Examples. 1. The initial object in the category of cocones on the diagram D, plim
ÝÑ

Di, ıiq would
be defined entirely by the property that if pA, aiq was another cocone, there would be a unique
morphism of cocones e : lim

ÝÑ
Di ÝÑ A. In other words, the existence of a unique e such that this

diagram commutes:
D1

lim
ÝÑ

Di B

D2

ı1
a1

e

ı2 a2

but this is exactly the universal property of the coproduct and in a category with coproducts, any
object satisfying this property is uniquely isomorphic to any other. Thus we may alternatively
define the coproduct as the colimit of this diagram. Then we can expand that to finite coproducts
as the colimit of diagrams in the form of the category of n discrete objects. This also seems to
suggest we have the right definitions, as coproducts are the minimal way of gluing two objects.

2. For our second example, let us work in Set. We would like to find the colimit of a diagram

D3 D1 D2
f3 f2 . If our definition is close enough to what we intended, then we would

hope lim
ÝÑ

Di resembles a gluing of D1, D2 and D3 along some well chosen subset.

Claim. The equivalence classes of the disjoint union D2

š

D3 under the equivalence relation
generated by

ı2 ˝ f2pxq „ ı3 ˝ f3pxq,

where ıi is the inclusion into the coproduct, is the colimit of the diagram (again with the natural
inclusions i : Di ÝÑ D2

š

D3{ „).
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Proof. It is clear that this is a cocone of the diagram, since we define the equivalence classes to
satisfy exactly the commutativity requirement.

We must show it is initial in the category of cocones. Let

D1 D2

D3 C

f2

f3 c3

c2

.

be another cocone.

By the universal property of the coproduct, we have unique maps e : D2

š

D3 ÝÑ C and
f : D2

š

D3 ÝÑ D2

š

D3{ „. Also we have that for all z P D1, c3pf3pzqq “ c2pf2pzqq so in
particular e factors through f to a map D2

š

D3{ „ÝÑ C which takes the equivalence class ras
to cipaq for a P Di. It is easy to show that all such functions must do this and so it is unique.

Then in a similar way to what we expected, the maps from D1 can be seen as identifying the
elements to glue together. The claim is also true in Top and lends credence to this geometric
interpretation of gluing.

The limit of such a diagram is called the pushout of arrows fi : D1 ÝÑ Di and is normally denoted
by D2

š

D1
D3 to represent this idea of gluing D2 and D3 along the image of D1.

3. Colimits of diagrams of the form D1 D2

f

g
are an important case of colimits called the

coequaliser of f and g. Like in the previous example, in Set, the coequaliser is a quotient, but
we are now gluing D2 to itself. It is then D2{ „ where „ is the equivalence relation generated
by the relations fpxq „ gpxq for all x P D1.

3.2 Cones and Limits
Let us consider the dual notions to those in the last section. Though they do not admit as simple an
interpretation as the gluing of colimits, we are familiar with a number of examples. We will see that
limits are a particular abstraction of finding solution sets of equations and this is where the "sub-thing"
feel of many limits comes from.

Definition 3.2.1. Let I be an index category and let D : I Ù C be a diagram. A cone for D
consists of an object C P Ob pCq and for each i P Ob pIq a morphism cj : C ÝÑ Di. Further, if
α : i ÝÑ j P HomIpi, jq, then Dpαq ˝ ci “ cj .

Taking the same examples as before:

Examples. 1. Let I be the category with two objects and no non-identity morphisms. Cones of
a diagram D : I Ù C which picks the two objects D1, D2 P Ob pCq, is just a choice of object
C P Ob pCq and any morphisms ci : C ÝÑ Di.

2. Let I be the category ‚ ‚ ‚ then in a similar way as for the cocones, cones are
choices of C P Ob pCq and ci : C ÝÑ Di such that

C D2

D3 D1

c3

c2

f2

f3

commutes.

3. If I is the category ‚ ‚ , then for the diagram D1 D2

f

g
, a cones is a maps c : C ÝÑ

D1 such that f ˝ c “ g ˝ c.

As we’d expect, these are the dual diagrams of our examples of cocones.
Remark. Again dualising, if C has an initial object A P Ob pCq, then there is a trivial cone for any
diagram consisting of A and the unique maps ci : A ÝÑ Di.
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Cones gives us some way of putting our object into each of those in the diagram in a way that is
compatible with the morphisms in the diagram. If we are working in a concrete category, like Set,
then we can imagine that each element of x P C contains a component element for each Di that must
obey the composition of morphisms given in the diagram. This matches the idea of setting up systems
of equations without have to "look inside" the objects. For example, we will see that for functions of
sets f, g : AÑ B, the set tx P A | fpxq “ gpxqu is a limit of a particular diagram, since we looking to
choose elements of A which obey a certain relation. We are again looking for the maximal such object,
since we would like to encapsulate all the solutions.

Definition 3.2.2. Let D : I Ù C be a diagram, and let pA, paiqq and pB, pbiqq be cones of D. A
morphism of cones from A to B is a morphism e : B ÝÑ A such that ai ˝ e “ bi for every i P I.

Returning to our examples:

Examples. 1. Letting A and B be cones over the category of two discrete objects, we are looking
for a morphism e such that the following diagram commutes:

D1

B A

D2

b1

e

b2

a1

a2

2. For our second diagram, morphisms of cones give the diagram

D2

B A D1

D3

f2

b2

b3

e

a2

a3 f3

3. For the last diagram, we need e with

A D1 D2

B

a
f

g

e b

With morphisms defined, we have the category of cones of a diagram D : I ÝÑ C.

Definition 3.2.3. Let D : I Ù C be a diagram. If it exists, the terminal object in the category of
cones of D is called the limit of D and is denoted by

lim
ÐÝ

Di.

We say it is a finite limit if I is a finite category.

We will again talk of the limit, since all limits of D are unique up to unique isomorphism.

Examples. 1. By the same reasoning as for the coproduct, the limit of our first example is the
product D1 ˆD2.

2. Let us work in Set again to wrap our heads around this second example. Our diagram consists
of three sets D1, D2, D3 and maps fi : Di ÝÑ D1 for i “ 1, 2

Claim. The limit of this diagram is given by the set

D2 ˆD1 D3 :“ tpx, yq P D2 ˆD3 | f2pxq “ f3pxqu

equipped with the projections onto D2 and D3.
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Proof. Simply by following elements along arrows, we can see this is a cone. If

C D2

D3 D1

c3

c2

f2

f3

is another cone, then there is a unique morphism of cones C ÝÑ D2 ˆD1 D3 which takes z P C
to pc2pzq, c3pzqq.

This tells us that we have the right idea considering limits as finding solutions to systems of
equations. The limit of such a diagram is called the pullback or fibre product of arrows fi : Di ÝÑ

D1. We have the same result again in Top.

3. The dual of a coequaliser of arrows f, g : D1 ÝÑ D2 is, unsurprisingly, called the equaliser of f
and g. As we’d hope given our intuition about solution sets, in all of Set, Top and Grp this is
tx P D1 | fpxq “ gpxqu.

Let’s note that even the most basic constructions like this can give non-trivial results.

Proposition 3.2.4. Let C be a category and let f, g : X ÝÑ Y be morphisms. Then, if it exists, the
equaliser e : E ÝÑ X is a monomorphism.

Proof. Let φ, ϕ : Z ÝÑ E be morphisms. Then e ˝ φ and e ˝ ψ both equalise f and g. The fact that
the equaliser is a limit says that there is a unique morphism ψ : Z ÝÑ E such that e ˝ ψ “ e ˝ φ (in
other words, ψ “ φ) and so if e ˝ φ “ e ˝ ϕ, we must have that φ “ ϕ.

3.3 Fibre Products in Familiar Categories

Now that we have sense of some of these constructions, let us look at the specific example of fibre
products in our favourite categories, CovX and kSAlgop.

Theorem 3.3.1. Let X be a topological space. Let pY , pZ , pW be covering spaces and let f : Y ÝÑ Z
and g : W ÝÑ Z covering space morphisms. Then the fibre product of f and g in CovX exists and is
the covering space p : Y ˆZ W Ñ X given by ppy, wq “ pY pyq “ pW pwq, equipped with the projections
πY and πW , where Y ˆZ W is the fibre product in Top.

Proof. We need to show that the covering space we defined is a cone. By the definition of the fibre
product in Top, we already have that the diagram

Y ˆZ W Y

W Z

πY

πW f

g

commutes in Top and so we need only that it is indeed a covering space and that all the continuous
maps are also morphisms in CovX for this to be a cone. We already know f and g are covering space
morphisms, so we need that

Y Y ˆZ W W

X

pY
p

πY πW

pW

commutes. The left triangle is the definition we have given for p, so we only need that on Y ˆZ W we
have p “ pW ˝ πW . But

ppx,wq “ pY pyq “ pZpfpyqq “ pZpgpwqq “ pW pwq

since every py, wq P Y ˆZ W has fpyq “ gpwq.
To show it is a covering space, we use this lemma from [10]:
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Lemma 3.3.2. Let X be a topological space and qi : Yi Ñ X covering spaces for i “ 1, 2. Let
φ : Y1 ÝÑ Y2 be a morphism of covering spaces. Then for any x P X there is a neighbourhood U ,
finite discrete spaces Ii, homeomorphisms ϕi and set function h : I1 Ñ I2 such that the following
diagram commutes:

p´1
1 pUq p´1

2 pUq

U ˆ I1 U ˆ I2

U

ϕ1

φ

q1

ϕ2

q2

p1U ,hq

Proof of Lemma. Note that the intersection of evenly covered open sets is itself open and evenly
covered. In particular, there is an non-empty neighbourhood V of x which is evenly covered under
both covering maps. This gives all of the diagram besides the existence of h.

We construct h as follows. We define r “ ϕ2 ˝ φ ˝ ϕ
´1
1 . It is continuous and since it preserves

projections, we must have rpu, iq “ pu, rupiqq for some map ru : I1 Ñ I2. We are now looking for a
neighbourhood U Ă V of x on which ru is the same for all u P U . Let us consider the map

V ˆ I1 Ñ I2 ˆ I2

pu, iq ÞÑ prxpiq, rupiqq

The diagonal ∆ “ tpi, iq P I2 ˆ I2u is open and thus so is its preimage tpu, iq P V ˆ I1 | rxpiq “ rupiqu.
This set contains xˆ I1 and so we may take a neighbourhood U ˆ I1 within it. Letting h “ rx on this
neighbourhood, we are done.

Now we can show that Y ˆZ W is a covering space. Let x P X. The lemma holds in reference to
both f and g and by intersecting open sets we may find a neighbourhood U of x in which the lemma
holds for both. Then U is evenly covered by p, since p´1pUq is homeomorphic to U ˆ I for some
discrete, finite I.

Then we just need to know that this is the terminal cone. Since it is the pullback in Top, for any
other covering space X and covering space maps φY , φW , there is a unique continuous map φ : X Ñ
Y ˆZ W such that the diagram

X

Y ˆZ W Y

W Z

φY

φW

φ

πY

πW f

g

commutes. In fact, φ “ pφY , φW q and so p˝φpxq “ pY pφY pxqq “ pX pxq with the last equality following
from the fact that φY is a covering space morphism. Thus φ P HomCovX

pX , Y ˆZW q and is unique.

Theorem 3.3.3. Let k be a field. Let A,B,C be separable k-algebras and let f : C ÝÑ A and g : C ÝÑ
B be k-algebra homomorphisms. Then the pushout of f and g in kSAlg exists and is given by the
tensor product of A and B over C, AbCB with the appropriate inclusions a ÞÑ ab1B and b ÞÑ 1Abb.

Recall. The maps g and f turn A and B into C-modules. It is with this structure that we take the
tensor product.

Proof. Take c P C. Then it maps c ÞÑ fpcq ÞÑ fpcq b 1B P A bC B via A and maps c ÞÑ gpcq ÞÑ
1A b gpcq P AbC B and with the C-module structure

fpcq b 1B “ c ¨ 1A b 1B “ 1A b c ¨ 1B “ 1A b gpcq.

and so it is a cocone. So we only need that it is the initial cocone. Let us assume we have another
cocone, and such the commutative diagram:

C A

B D

f

g φA

φB
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Then we may define the map

ϕ : AˆB Ñ D

pa, bq ÞÑ φApaqφBpbq.

This is bilinear and has the additional property that

ϕpfpcqa, bq “ φApfpcqaφBpbq “ φApfpcqqφApaqφBpbq “ φBpgpcqφApaqφBpbq “ ϕpa, gpcqbq

and so ϕpc ¨ a, bq “ ϕpa, c ¨ bq. The universal property of the tensor product then tells us that there is
an algebra homomorphism φ : AbC B ÝÑ D and that it is the unique such map with φ ˝ ι “ ϕ, where
ι : AˆB Ñ AbC B. Thus φ is a morphism of cocones and it is unique.

Corollary 3.3.4. We have fibre products in kSAlgop, given by the corresponding pushout in kSAlg.

3.4 Inverse Limits and Profinite Groups
This last, more abstract example of a limit will be useful later on when we return to field theory.

Recall. A (categorical) poset is a small category J such that for any i, j P Ob pJq, there is at most one
element in HomJpi, jq YHomJpj, iq. If HomJpi, jq ‰ H, we write that i ď j.

Definition 3.4.1. Let J be a poset and let A : J Ù AbGrp be a diagram. In particular, this means
that for all i ď j, we have a group homomorphism µij : Ai ÝÑ Aj such that if i ď j ď k, µjk˝µij “ µik.
Then the limit lim

ÐÝ
Ai, if it exists, is called the inverse limit of the system tAiu.

Proposition 3.4.2. For any such system, lim
ÐÝ

Ai exists and is equal (or uniquely isomorphic to) the
group

!

paiqiPJ P
â

iPJ

Ai | µjkpajq “ ak for all j ď k
)

where we notate J :“ Ob pJq.

Proof. If we have D P Ob pGrpq with maps πi : D ÝÑ Ai which makes it into a cone, then we also
have the unique morphism of cones

π : D ÝÑ lim
ÐÝ

Ai

d ÞÝÑ pπipdqqiPI

So again limits give us a way of picking out those elements that satisfy a series of equations.

Definition 3.4.3. Let J be a poset. We say that J is directed if and only if for all i, j P Ob pJq, there
exists k P Ob pJq such that i ď k and j ď k.

Definition 3.4.4. Let J be a directed poset and let G : J Ù Grp be a diagram with Gi finite for
all i P Ob pJq. Then the group G “ lim

ÐÝ
Gi is called a profinite group. Giving each Gi the discrete

topology, G is a limit in the category of topological groups and inherits a topology.
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Chapter 4

Galois Categories

We are now only moments away from define our first truly uniting category theoretical construction.
There are only a couple of definitions that remain.

It is helpful for us to understand the properties that functors between categories preserve. This
motivates the following definitions:

Definition 4.0.1. Let C and D be categories with a functor F : C Ù D. F is called conservative
if and only if F a morphism φ : A ÝÑ B is an isomorphism if and only if Fφ : FA ÝÑ FB is an
isomorphism.

Remark. If φ : A
„
ÝÝÑ B is an isomorphism then 1FA “ F p1Aq “ F pφ´1 ˝ φq “ F pφ´1q ˝ F pφq so F pφq

is an isomorphism for any functor. The other direction is not generally true.

Since we may compose functors, for a diagram I : I Ù C and a functor F : C Ù D determines a
diagram with index category I, FI : I Ù D. It is meaningful then to ask the relationships between
the limits and colimits of I in C and FI in D.

Definition 4.0.2. Let C and D be categories with a functor F : C Ù D. F is called exact if and only
if F commutes with limits and colimits.

When we say that F commutes with limits, we mean that if lim
ÐÝ

Di is the limit of a diagram

D : I Ù C, then F
´

lim
ÐÝ

Di

¯

“ lim
ÐÝ

FDi where we apply F to each morphism associated with the limit.
Similarly for commuting with colimits.

In Set, or other concrete categories, we can see injective maps as inclusions. An inclusion A ãÑ X
then gives us a way of partitioning X “ X Y pXzAq. That motivates our next definition:

Definition 4.0.3. Let C be a category, and let f : A ÝÑ B be a monomorphism in C. We say f is
an isomorphism of A with direct summand of B if there exists an element C P Ob pCq and a morphism
g : C ÝÑ B such that B is isomorphic to A

š

C.

Note that these don’t exist in all categories. Particularly, in Top the coproduct of two non-empty
spaces is always disconnected. Then any injective continuous map whose image is not both open and
closed is not an isomorphism with direct summand of its codomain.

4.1 The Definition of a Galois Category
Definition 4.1.1 (Galois Category). [12] Let C be a category and let F : C Ù FinSet be a functor.
Then we call the pair pC, F q a Galois category with fundamental functor F if it fulfils the following
conditions:

1. C has all finite limits and colimits.

2. F is exact and conservative.

3. For any morphism in C, f : A ÝÑ C, there is a B P Ob pCq, an epimorphism g : A ÝÑ B and a
monomorphism h : B ÝÑ C such that f “ h ˝ g.

4. Every monomorphism f : A ÝÑ B is an isomorphism of A with direct summand of B.

33



What initially makes this definition rather intimidating is the same thing that will eventually make
it of such use to us. It is both highly abstract and seemingly highly constrained. What is so powerful
here is that we find these are the exact properties needed to unite the apparent similarities between
the Galois correspondence of covering spaces and the fundamental theorem of Galois field-theory.

Our aim in this chapter is to show that any given Galois category are equivalent to categories of
finite G-sets for some profinite group G. Better yet, in our favourite categories of CovX and kSAlgop,
this equivalence refers exactly to the Galois correspondences from Algebraic Topology and Field theory.
In other words, we find that kSAlgop

» Galpks{kq-FinSet and if X admits a universal cover X̃, then
CovX » πpX̃, xq-FinSet.

Before we reach this though, we need to address a practical issue. Conditions 3 and 4 seem fairly
simple, but it is not immediately clear how we might go about trying to prove the existence of all
limits, or that F is exact.

The trick here is to consider how we might build new limits from old ones. If we can show all limits
are examples of a few simple ones, we might be able to reduce out workload. For example, we can
build all finite products by iteratively taking pairwise products, so if we show that pairwise products
exist in a category, we get all finite products for free. We can note that if our category has a terminal
object, the fibre product of any two objects over the terminal object is their product. So if a category
has a terminal object and fibre products then it must have all finite products too. It turns out that
this is enough:

Theorem 4.1.2. Let C be a category. Suppose C has a final object Z and all fibre products exist in
C. Then all finite limits exist in C.

We will prove this theorem with the use of the following lemma from [7].

Lemma 4.1.3. For finite I and a diagram D : I Ù C, if C has all equalisers and further all pairwise
products of Dis then lim

ÐÝ
Di exists.

Thus if we can prove that all equalisers and products exist in C, then we know all finite limits
exist.

Proof of lemma. Let us denote I :“ Ob pIq. We have the existence of two products:
ź

iPI

Di

and
ź

u

Dk “
ź

u : jÝÑk

Dk

where the lower product is over all the arrows in I and so has a copy of Dk for every arrow in the
diagram which points there. Then they come equipped with projections pj :

ś

iPI Di ÝÑ Dj for
i P I and qv :

ś

uDk ÝÑ Dcodpvq where codpvq is the codomain of v, for arrows in I. Then since
ś

uDk is a product and for each u we have a map pcodpuq :
ś

iPI Di ÝÑ Dcodpuq, there exists a unique
f :

ś

iPI Di ÝÑ
ś

uDk such that qu ˝ f “ pcodpuq for all u.
This is not the only way to give maps

ś

iPI Di ÝÑ Dcodpuq. Since Du : Ddompuq ÝÑ Dcodpuq, we
may take Du ˝ pdompuq :

ś

iPI Di ÝÑ Dcodpuq and thus we have a unique g :
ś

iPI Di ÝÑ
ś

uDk such
that qu ˝ g “ Du ˝ pdompuq for all u.

This is to say, for all arrows u in I, the top and bottom squares of this diagram commute

Dcodpuq Dcodpuq

ś

uDcodpuq

ś

iPI Di

Dcodpuq Ddompuq

qu

qu

pcodpuq

f

g

pdompuq

Du

Now we may form the equaliser

E
ś

iDi

ś

uDk
e

f

g
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Claim. E equipped with the morphisms µi :“ pi ˝ e : E ÝÑ Di is a cone of D.

Di

ś

iPI Di E

pi

e

µI

For any arrow u in I

µcodpuq :“ pcodpuq ˝ e “ qu ˝ f ˝ e “ qu ˝ g ˝ e “ Du ˝ pdompuq ˝ e “: Du ˝ µdompuq

where we use the commutativity of the two squares in the diagram and that e equalises f and g. So
the claim is true.

Now let C be another cone, so we have maps ci : C ÝÑ Di. Then we get our unique map c : C ÝÑ
ś

iPI Di. The fact that this is a cone means that it equalises f and g in which case it factors uniquely
through E. Thus E is the limit that we are looking for.

Proof of theorem 4.1.2. Since we know that AˆB “ AˆZB, where Z is the terminal object, it remains
only to show that the existence of fibre products and a final object gives existence of all equalisers.
Therefore, let f, g P HomCpA,Bq. Construct the fibre product of f and g, AˆB A:

AˆB A A

A B

π1

π2 g

f

(4.1)

In Set, this would be constructing the set tpx, yq P AˆA | fpxq “ gpyqu. Then we construct the fibre
product E as:

E A

AˆB A AˆA

φ

ϕ p1A,1Aq

pπ1,π2q

(4.2)

Claim. φ : E ÝÑ A is the equaliser of f and g.
Note that in Set, E “ tppx, yq, zq P pAˆB Aq ˆA | px, yq “ pz, zqu and so we must have x “ y “ z

and fpxq “ gpyq “ gpxq for every triple in E and so is the equaliser we are looking for.
In the general setting, we want that f ˝ φ “ g ˝ φ. Our first diagram gives that f ˝ π2 “ g ˝ π1 and

we apply the projections from AˆA on the second diagram, alongside the definition of the product of
function, to find that φ “ π1 ˝ ϕ “ π2 ˝ ϕ. Then

f ˝ φ “ f ˝ π2 ˝ ϕ “ g ˝ π1 ˝ ϕ “ g ˝ φ

so φ equalises f and g.
Any e : E1 ÝÑ A which equalises f and g gives a cone of eq. (4.1) by putting e on both the top

and the left, thus we get a unique morphisms E1 ÝÑ A ˆB A. Then this is a cone eq. (4.2) is we let
φ “ e and ϕ be that unique morphism. Thus we have a unique morphism of cones E1 ÝÑ E and E is
universal.

This gives us a number of powerful results:

Corollary 4.1.4. If a category C has at least one of

• all finite coproducts and coequalisers

• an initial object and all pushouts

then it has all finite colimits.

Theorem 4.1.5. For a functor F : C Ù D on a category C with all finite limits, the following
statements are equivalent:

1. F commutes with all finite limits.
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2. F commutes with finite products and equalisers.

3. F maps final objects to final objects and commutes with fibre products.

Proof. 1. implies 3.. Then our proof of theorem 4.1.2 gave us that finite products and equalisers were
the result of taking fibre products and using final objects. Thus 3. implies 2.. Finally, the proof of
lemma 4.1.3 tells us that all limits are the result of taking equalisers and products, so 2. implies 1..

Corollary 4.1.6. For a functor F : C Ù D on a category C with all finite colimits, the following
statements are equivalent:

1. F commutes with all finite colimits.

2. F commutes with finite coproducts and coequalisers.

3. F maps initial objects to initial objects and commutes with pushouts.

With these results we are ready to show that we have met some Galois categories already.

4.2 Example: Finite Sets
Theorem 4.2.1. The category of finite sets, FinSet, is a Galois category with fundamental functor
1FinSet : FinSet Ù FinSet.

Proof. We will prove each condition.

1. FinSet has both an initial and a final object in H and tHu (or any singleton) respectively. As
we have shown, both fibre products and pushouts exist in FinSet and so by theorem 4.1.2 and
corollary 4.1.4, FinSet has all finite limits and colimits.

2. The identity functor trivially has these properties.

3. In FinSet, epimorphisms are surjections and monomorphisms are injections. So let f : A ÝÑ B

be a map of sets. The decomposition A fpAq B
f is as desired.

4. Let f : A ÝÑ B be injective. Then B “ fpAq
š

pBzfpAqq.

4.3 Example: Covering Spaces
Theorem 4.3.1. Let X P Ob pTopq be a connected topological space and let x P X. Let us define
Fx : CovX Ù FinSet to be the functor which takes the covering space pY : Y Ñ X to the fibre p´1

Y pxq
and takes a morphism f : Y ÝÑ W to the map fæp´1

Y pxq
: p´1

Y pxq Ñ p´1
W pxq. Then pCovX , Fxq is a

Galois category.

Proof. 1. We have already established in section 1.4.2 that we have both final and initial objects.
Further in section 3.3 we showed we have fibre products. All that remains is to show that we
have pushouts.

Assume we have morphisms fi : Z ÝÑ Yi for i “ 1, 2. We know that the pushout in Top is the
set Y1

š

Y2{ „ where „ is generated by relations of the form f1pzq „ f2pzq for z P Z, with the
associated inclusions y ÞÑ rys. Define the map

p : Y1

ž

Y2{ „ Ñ X

rys ÞÑ

"

p1pyq if y P Y1

p2pyq if y P Y2

Note this is well defined, because if y1 „ y2 either y1 “ y2 or there is a z P Z with yi “ fipzq in
which case p1pf1pzqq “ pZpzq “ p2pf2pzqq since the fis are covering space morphisms. In much
the same way as with fibre products, including the use of lemma 3.3.2 again, it can be shown
that this is a covering space and so the desired pushout.

Thus CovX has all finite limits and colimits.
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2. Since Fxp1Xq “ 1´1
X pxq “ x and FxpH Ñ Xq “ H, we have that initial and final objects

commute with F . We need then that F commutes with fibre products and pullbacks.

Let fi : Yi ÝÑ Z be morphisms for i “ 1, 2 and let Y1 ˆZ Y2 be the fibre product. Then

FxpY1 ˆZ Y2q “ Fxptpy1, y2q P Y1 ˆ Y2 | f1py1q “ f2py2quq

“ tpy1, y2q P Y1 ˆ Y2 | f1py1q “ f2py2q, pY1
py1q “ pY2

py2q “ xu

“
 

py1, y2q P p
´1
Y1
pxq ˆ p´1

Y2
pxq | f1py1q “ f2py2q

(

“ tpy1, y2q P FxpY1q ˆ FxpY2q | Fxpf1qpy1q “ Fxpf2qpy2qu

“ FxpY1q ˆFxpZq FxpY2q

since F pfiq is the restriction of fi to P´1
Yi
pxq. This is the desired result.

Let gi : Z ÝÑ Yi be morphisms for i “ 1, 2 and let W “ Y1

š

Z Y2{ „ be the pushout.

Each rys PW is in one of ıpY1qzıpY2q, ıpY2qzıpY1q or ıpY1qX ıpY2q, so FxpW q is equal to the union
of the elements of the fibre in each of these sets. That is the sets

trys PW | y P YizfipZq, pipyq “ xu

and the set
trys PW | Dz P Z, y “ fipzq for i P t0, 1u, ppyq “ xu

form a partition of FxpW q. This is exactly the result of taking p´1
1 pxq

š

p´1
2 pxq and gluing it

along the image of p´1
Z pxq, since pZpzq “ x if and only if pipfipzqq “ x.

Thus FxpW q is exactly the pushout of the diagram

FxpZq FxpY1q

FxpY2q

F pf1q

F pf2q

and we are done.

So we have that F is exact.

The proof that F is conservative is from [10].

Let φ : Y1 ÝÑ Y2 be a morphism of covering spaces such that Fxφ : p´1
1 pxq ÝÑ p´1

2 pxq is a
bijection. This means that the set function h constructed in lemma 3.3.2 is a bijection on some
neighbourhood of x and consequently the set of y P X for which Fyφ : p´1

1 pyq ÝÑ p´1
2 pyq is

invertible is also open, and contains x. A similar argument shows its complement is also open,
but X is connected so the complement is empty. Thus φ is a continuous bijection.

Lastly, evenly covered opens form a basis of the topology on X and φ respects the covering maps,
we must have that φ is open and thus a homeomorphism.

3. Let f : Y1 ÝÑ Y2 be a morphism of covering spaces.

Let us define the space Y “ fpY1q Ă Y2. This is a covering space, inheriting p2æY .

Then we may define

f2 : Y1 ÝÑ Y

y1 ÞÝÑ fpy1q

and

f 1 : Y ÝÑ Y2

y2 ÞÝÑ y2

Then, as epimorphism and monomorphisms are just surjections and injections from section 1.4.1,
f2 is epic, f 1 is monic and f “ f 1 ˝ f2.
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4. Let f : Y1 ÝÑ Y2 be injective. If the image of f is both open and closed then it is a connected com-
ponent of Y2, then Y2zfpY1q is still a covering space and we would have Y2 “ fpY1q

š

pY2zfpY1qq.
So let us show that fpY1q is open.
Take y2 P fpY1q. Then there is exactly one y1 P Y1 with fpy1q “ y2. There exists a neighbourhood
of x :“ p1py1q “ p2py2q which is evenly covered by both covering spaces. Then the copy of this
neighbourhood around y1 is mapped homeomorphically onto the copy of this neighbourhood
around y2, again using lemma 3.3.2 and thus this open is contained in fpY1q and it is open.
Let us take y2 P Y2zfpY1q such that every neighbourhood of y2 intersects fpY1q. Let us take
a neighbourhood U of x :“ pY2

py2q which is evenly covered by both covering spaces such that
lemma 3.3.2 holds. Then one of the corresponding neighbourhoods in Y1 intersects the one around
y2 and so must map onto this neighbourhood and y2 P fpY1q. So fpY1q contains its boundary, is
both open and closed and we are done.

4.4 Example: Separable Algebras
Now we return to our category kSAlgop. For this section, we need some results from Galois field
theory, which can be found in appendix A.2, and a brief review of the important definition of group
actions, found in appendix A.3. As in section 1.5, we will use these as tools to better understand the
categorical apparatus we have set up.

Now, nearly 40 pages on, we return to our motivating theorem theorem 0.0.1:

Theorem 0.0.1. Let k be a field. Then the category kSAlg of separable k-algebras is anti-equivalent
to the category Galpks{kq-FinSet of finite sets with a continuous action of Galpks{kq, where ks is the
separable closure of k.

Proof. [6] If B is a free separable k-algebra, let F pBq “ kAlgpB, ksq, the set of all k-algebra homo-
morphisms B Ñ ks. This is finite because B is separable.

If g P F pBq and σ P Galpks{kq, then σ ˝ g : B ÝÑ ks is a k-algebra homomorphism so we get an
action of Galpks{kq on F pBq. This action is continuous.

If f : B ÝÑ C P kSAlgpB,Cq, then define F pfq : F pCq ÝÑ F pBq by F pfqpgq “ g ˝ f , where
g : C ÝÑ ks.

This is a contravariant functor. It fulfils the conditions we required for the first definition of an
equivalence. A full description of a weak inverse of F can be found in r6s.

There is something unsatisfying about this field theory heavy proof of our statement, especially
given how closely it resembles theorem 0.0.2 in statement. This is because they are both examples of
a larger theorem about Galois categories. Thus to complete our examples, we have:

Theorem 4.4.1. For a field, k, let kSAlg be the category of separable k-algebras. Then pkSAlgop, F q
for F “ kAlgp´, k̄q is a Galois category.

We will state without proof two lemmas from [10] which will be helpful here:

Lemma 4.4.2. Let A “ ‘mi“1Ai decomposed into finite separable field extensions as in theorem A.1.5.
Then for any field L, any k-algebra homomorphism A ÝÑ L factors through some projection πi : A ÝÑ
Ai.

Lemma 4.4.3. Let A “ ‘mi“1Ai and B “ ‘nj“1Bj ‰ k0 be separable k-algebras, decomposed into finite
separable field extensions as in theorem A.1.5. Then as sets,

kAlgpA,Bq “ Hom
kAlgpA,Bq –

n
ź

j“1

m
ž

i“1

EmbkpAi, Bjq.

This has the important corollary that if kAlgpA,Bq is non-empty, then for every j there is some i
such that Ai embeds into Bj .

Proof of Theorem. 1. We have from section 1.5 and section 3.3 that initial and final objects exist
and so do fibre products. We need only the existence of pushouts, which is to say the existence
of fibre products in kSAlg.
Let us take f : A ÝÑ C and g : B ÝÑ C. Then the pullback does indeed exist and is given
by A ˆC B “ tpa, bq P A ‘ B | fpaq “ gpbqu as we have come to expect. The fact that this is
separable is slightly non-trivial and given in [10].
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2. F pkq “ kAlgpk, k̄q “ t1u so we have that F takes final objects to final objects. Since F pk0q “ H,
it sends initial objects to initial objects.

So we need that F sends fibre products to pushouts and visa versa. For the pushout of f : C ÝÑ A
and g : C ÝÑ B:

F pAbC Bq “ kAlgpAbC B, k̄q

“
 

C-bilinear maps Φ: AˆB Ñ k̄
(

“
 

Φ: AˆB Ñ k̄ | Φpc ¨ a, bq “ c ¨ Φpa, bq “ Φpa, c ¨ bq
(

“
 

pφ, ϕq P kAlgpA, k̄q ˆ kAlgpB, k̄q | F pfqpφq “ F pgqpϕq
(

“ F pAq ˆF pCq F pBq.

A similar statement is shown in [10] for sending fibre products to pushouts. We will take it for
granted so as to note that F is exact.

Finally, if F puq : kAlgpA, k̄q ÝÑ kAlgpB, k̄q is an isomorphism, then we must have that u is an
isomorphism, so F is conservative.

3. Let φ : A ÝÑ B be a morphism in kSAlg. Write A “ ‘mi“1 and B “ ‘nj“1. We can write
φ “ pφ1, . . . , φnq, for φj “ πj ˝ φ. By lemma 4.4.2, we have that each φj factors through some
Aipjq. Then since φj

`

Aipjq
˘

is a subfield of Bj , ‘nj“1φjpAipjqq is a separable k-algebra. Thus we
have the decomposition into epic and monic morphisms:

Àm
i“1Ai

Àn
j“1 φjpAipjqq

Àn
j“1Bj .

Since when we dualise this category we will reverse all arrows and swap monomorphisms and
epimorphisms, this is still an adequate decomposition.

4. A monomorphism in kSAlgop is an epimorphism in kSAlg. This is just a surjective morphism.
So we begin with a surjective morphism f : A ÝÑ B and we hope to find another surjective
morphism g : A ÝÑ C such that A – B ‘C, where ‘ is the product in kSAlg from section 1.5.
Then let us decompose A and B as above. From lemma 4.4.3, we have that there are isomorphisms
of fields Aipjq ÝÑ Bj for all j and thus B – ‘ki“1Ai, for some reordering of the Ais and k ď m.
Then we may take C “ ‘mi“k`1Ai with the surjective projection A ÝÑ C and note A “ B ‘ C.

4.5 Properties

So we have established a definition of Galois categories, and shown that some of our favourite categories
are examples of them. What now? We could be forgiven for getting a little bored in the last few pages.
Our definition was general enough that it hasn’t shed any immediate light on the similarities between
these categories but specific enough that we’ve had to put in some work to verify that CovX and
kSAlgop are indeed Galois categories. Thankfully though, with that legwork behind us we are ready
for the payoff.

Galois categories have a number of interesting, small properties. For example

Proposition 4.5.1. Let pC, F q be a Galois category. Then f P HomCpA,Bq is a monomorphism or
an epimorphism if and only if Ff is injective or surjective respectively.

Our concern, however, is to finally understand the connection between theorem 0.0.1 and theo-
rem 0.0.2 and since it is in sight now, we will move on from these small results onto bigger things.

Definition 4.5.2. Let F : C Ù D be a functor. The automorphism group of F , AutF is the set of
natural isomorphisms α : F ñ F .

Note that in a general case, we may concern ourselves with whether this is a set, but in our examples
it is not a concern. In fact, where it is a set, we have a much stronger result:

Theorem 4.5.3. Let F : C Ù FinSet be a functor. Then AutF is canonically a profinite group.
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Proof. Any automorphism α : F ñ F consists of isomorphisms αX : F pXq
„
ÝÝÑ F pXq for all X P

Ob pCq. In FinSet, isomorphisms are just permutations, so α consists of choice of permutation of
αX P SpF pXqq for all X P Ob pCq subject to the naturality condition eq. (2.3):

F pXq F pXq

F pY q F pY q

αX

F pfq F pfq

αY

That is to say
AutF Ă

ź

XPObpCq

SpF pXqq

where the right hand side is a profinite group when given the discrete topology in each component.
Finally, we note that AutF is the intersection of all sets tpαXqXPObpCq | F pfq ˝ αY “ αZ ˝ F pfqu over
all morphisms f : Y ÝÑ Z in C. These are closed and thus, as the closed subgroup of a profinite
group, AutF is profinite .

Remark. For any X P Ob pCq, we may form the projection AutF Ñ SpF pXqq so in particular we have
a continuous action

AutF ˆ F pXq Ñ F pXq

pα, xq ÞÑ αXpxq.

Better yet, if f P HomCpX,Y q, then by naturality F pfq ˝ αX “ αY ˝ F pfq which is to say that for all
x P X and α P AutF ,

F pfqpαXpxqq “ αY pF pfqpxqq

so F pfq is a morphism of AutF -sets.
So, we may consider the extension of F to F : C Ù AutF -FinSet.
A little fiddling around will show us that in our example of CovX , if X has a universal cover then

AutFx – πpX,xq, the fundamental group of X, and if we consider kSAlgop, then AutF – Galpks{kq.
So we can see that we have arrived at our grand unifying theorem, the Galois correspondence.

Theorem 4.5.4 (The Galois Correspondence). Let pC, F q be a Galois category. Then the functor
F : C Ù AutF -FinSet is an equivalence.

Before we take on this proof, we need a couple more definitions and some lemmas:

Definition 4.5.5. Let C be any category and X P Ob pCq. A subobject of X is an equivalence class
of monomorphisms m : M ÝÑ X under the equivalence relation m „ m1 if and only if there are some
f, f 1 such that

M M 1

X

f

m

f 1

m1

commutes. For a subobject rm : M ÝÑ Xs of X, a complement of rms is second subobject rm1 : M 1 ÝÑ

Xs such that X “M
š

M 1. This behaves nicely with the equivalences.

We may be able to consider this in a clearer way: The category of monomorphisms with codomain
X forms a full subcategory of the slice category C{X. Then if we have f and f 1 above, note that in
particular this means

m ˝ 1M “ m ˝ f 1 ˝ f.

Since m is a monomorphism, this means

f 1 ˝ f “ 1M .

The same argument going the other way shows that f ˝ f 1 “ 1M 1 , so f 1 “ f´1. So the subobjects of
X are just the isomorphism classes of monomorphisms in C{X. We are interested in the isomorphism
classes because we care only about how the monomorphism fits into X. For example, there is an
injective map tnu Ñ ta, bu for every n P N, but there are only 2 singleton subsets they can be mapping
to. We don’t care about n. We take equivalence classes to match this notion.
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Remark. Condition 4. of definition 4.1.1 of a Galois category is equivalently stated as

4’. Every subobject in C admits a complement.

Definition 4.5.6. An object X P Ob pCq is called connected if it has exactly two subobjects.

Note that any object X has itself and the initial object as subobjects and they are distinct if and
only if X is not initial.

Lemma 4.5.7. Every non-initial object X in a Galois category C can be written, unique up to re-
ordering, as a finite coproduct of connected objects.

Proof of lemma 4.5.7. [12] If X admits a subobject Y ÝÑ X which is neither X nor initial, then it
has a complement Z ÝÑ X. Further, because F is exact, this means F pXq “ F pY q

š

F pZq where
all these sets are non-empty. Since F pXq is finite, we can induct and know that this process will
terminate, so X is the coproduct of finitely many connected components.

Definition 4.5.8. Let C P Ob pCq be an object in a locally small category. Then the group of
isomorphisms in HomCpC,Cq is called the group of automorphisms of C, denoted AutC.

If G Ă AutC is a subgroup, then we may define the quotient of C by G, denoted C{G, if it exists,
as the coequaliser of all σ P G.

Lemma 4.5.9. Let pC, F q be a Galois category. Then for every connected C P Ob pCq,

|HomCpC,Xq| ď |F pXq|.

Proof. Let C P Ob pCq be connected and c P F pCq. Then for any X P Ob pCq, define the map

HomCpC,Xq Ñ F pXq (4.3)
f ÞÑ F pfqpcq.

This map is inject: if F pfqpcq “ F pgqpcq, then let B be the equaliser of f and g. By proposition 3.2.4,
B ÝÑ C is a subobject, and has c P F pBq. In fact, it is the largest subobject which equalises f and
g. By connectedness B “ C, e “ 1C and so f “ g.

Then for any connected object C P Ob pCq, AutC Ă HomCpC,Cq, so is finite. Since C has all finite
colimits, then C{AutC exists for all connected C.

Definition 4.5.10. Let us assume that pC, F q is a Galois category. An object C is said to be Galois
if it is connected and C{AutC is the final object.

Lemma 4.5.11. An object C P Ob pCq is Galois if and only if AutC acts transitively on F pCq.

Proof. Since F commutes with colimits, we have that F pC{AutCq “ F pCq{AutC and this is a singleton
(final) if and only if AutC acts transitively on F pCq.

Lemma 4.5.12. If an object C P Ob pCq is Galois, then the action of AutC on F pCq is free.

Proof. Since for a connected object C, by lemma 4.5.9, we have that |AutC| ď |F pXq|, if C is Galois
we must have |AutC| “ |F pXq| by lemma 4.5.11. Consequently, the action of AutC on F pCq is also
free.

Proof of theorem 4.5.4. From [12]: Take X P Ob pCq. We define D :“
ś

xPF pXqX and c :“ idF pXq P

F pDq “
ś

xPF pXq F pXq. That is, c has x in the xth place.
Let C ÝÑ D be the largest connected subobject with c P F pCq. For x P F pXq, let fx : C ÝÑ X be

the projection on the xth factor (where we compose C ÝÑ D with πx : D ÝÑ X. Then F pfxqpcq “ x
so eq. (4.3) is bijective for these C, c and X.
Claim. C is Galois.

Proof of claim. Let c1 P F pCq. Then

HomCpC,Xq Ñ F pXq

f ÞÑ F pfqpc1q

is an injection of finite sets with equal cardinality, and so is surjective. Since, by cardinality, HomCpC,Xq “
tfx | x P F pXqu, this means that c1 P F pDq is a permutation of F pDq. Then there is an induced au-
tomorphism of D, σ, permuting the copies of x such that c ÞÑ c1 and so C maps to a connected
component C 1 ÝÑ D. Since c1 P F pCq X F pC 1q, we find that C “ C 1 and consequently σ restricts to
an automorphism of C. //
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Thus, for any X P Ob pCq, there is a Galois object C and element c P F pCq such that

HomCpC,Xq Ñ F pXq

f ÞÑ F pfqpc1q

is a bijection.
Claim. If X is connected, then the right action of AutC on HomCpC,Xq is transitive.

Proof of claim. Take f, g : C ÝÑ X. Because f can be decomposed into the composition of an epic
and a monic morphism, and X is connected, we have that f is epic and so F pfq is surjective. So we
can choose d P F pCq with F pfqpdq “ F pgqpcq, and we choose σ P AutC such that F pσqpcq “ d, by
bijectivity. Then because F is functorial F pf ˝ σqpcq “ F pgqpcq and so f ˝ σ “ g. //

Let us continue with connected X. Fix f : C ÝÑ X and define G :“ tσ P AutC | f ˝ σ “ fu.

Claim. The induced map f̂ : C{G ÝÑ X is an isomorphism.

Proof of claim. Since F reflects isomorphisms, it is sufficient to show that F pf̂q : F pCq{GÑ F pXq is
bijective.

F pfq is surjective, so this map is too. Then since G acts freely on F pCq, we have

|F pCq{G| “ |F pCq|{|G| “ rAutC : Gs.

but AutC acts transitively on HomCpC,Xq with stabiliser G, so

|F pXq| “ |HomCpC,Xq| “ rAutC : Gs

so F pf̂q is surjective on sets of the same cardinality. Hence it is bijective. //

The culmination of this part of the proof, then, is the conclusion that every connected object X is
the quotient of a Galois object C by a finite subgroup of AutC.

Now we introduce a new category. Let I be the category of pairs pC, cq, for C P Ob pCq Galois and
c P F pCq. We define morphisms pC, cq ÝÑ pD, dq as f P HomCpC,Dq such that F pfqpcq “ d. Note
that again by lemma 4.5.9, any such morphism exists between any two pairs, then it is unique. So I is
a poset. Further, for any pC, cq, pD, dq P Ob pIq, there is a Galois object E, map f : E ÝÑ C ˆD and
e P F pEq such that F pfqpeq “ pc, dq. By projecting, we see that pE, eq is a common bound of pC, cq
and pD, dq so in fact I is a directed set.

Using this, it can be shown (see [12]) that

F “ colimpC,cqHomCpC,´q

where this colimit varies over all pC, cq P Ob pIopq.
Let f P HomIppC, cq, pD, dqq. AutD acts freely and transitively on F pDq and so for each σ P AutC

there is a unique τ P AutD such that F pτqpdq “ F pf ˝σqpcq and thus τ ˝f “ f ˝σ (since F pfqpcq “ d).
This gives us a homomorphism AutC Ñ AutD which is surjective since AutC acts transitively on
HomCpC,Xq.

Now let α P AutF . There is a unique σ P AutC with F pσqpcq “ αCpcq, and so we define a group
homomorphism AutF Ñ AutC. Using these, we may set up a map AutF Ñ limpC,cqPObpIqAutC since
for f : pC, cq ÝÑ pD, dq

AutC

AutF

AutD

f˚

commutes.
Since all objects of C are coproducts of connected objects and all connected objects of C are

quotients of Galois objects, any α P AutF is determined by its action of F pCq for C Galois. Hence
AutF is a closed subgroup of

ś

pC,cqPObpIq SpF pCqq. Finally, the compatibility condition to be in AutF
is exactly that required to be in limpC,cqPObpIqAutC and so

AutF “ lim
pC,cqPObpIq

AutC

as profinite groups. The projections AutF Ñ AutC are surjective.
F and the forgetful functor AutF -FinSet Ù FinSet are both exact and conservative, and therefore

so is F .
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Claim. If X P Ob pCq is connected, then so is FpXq.

Proof of claim. Let X be connected. then X “ C{G for some Galois C and G some finite subgroup
of AutC. Then

FpXq “ FpCq{G “ AutC{G.

This is a transitive AutF -set, so FpXq is connected. //

So finally we get to proving the equivalence. We use the choice-reliant definition:
Claim. F is essentially surjective.

Proof of claim. Let P be a finite AutF -set. Without loss of generality, we may assume that P is
transitive. Then P – AutC{G for some Galois object C and G a finite subgroup of AutC. Then
P – FpC{Gq as above. //

Claim. F is fully faithful.

Proof of claim. This is exactly the statement that for allX,Y P Ob pCq, the map from F , HomCpX,Y q Ñ
HomFinSetpFpXq,FpY qq is bijective.

It can be shown that these sets have the same cardinality, by arguing on connected components
and considering cosets. This can be found in [12].

Since F commutes with equalisers, morphisms that are not equal on the left will not be equal on
the right, so we have injectivity. Thus the map is bijective. //

We have fulfilled all the required conditions and F is an equivalence.

It is encouraged to go through this proof step by step with the covering space example in mind.
The idea of connected object conforms with that for connected spaces, as does Galois objects and the
standard definition for Galois covering spaces. What is so remarkable here is the ability to keep the
essence of the necessary properties whilst removing the geometric context, and so widening the scope
of the result dramatically, even when keeping the method of the proof almost exactly the same.

4.6 Concluding Galois Categories

With the completion of this proof, we finally see the reward of all the work we have to done to
get to this point. In quite a fantastic way, we have used a heavy dose of abstraction to take two
already rather involved mathematical examples and unite them. Not only did we do this by finding
some class that they both fit into but in fact we found the exact conditions required to express their
common behaviours. So as we hoped from the beginning, we have established a language that allows
us connections we might have intuitively noticed but had not been able to formalise.

Let us prove one of those first results to provide a satisfying conclusion to this chapter:

Theorem 0.0.2. Let X be a topological space. Then there is a canonical profinite group π̂pX,xq for
any x P X such that the category CovX of finite covering spaces of X is equivalent to the category
π̂pX,xq-FinSet of finite sets with continuous action of π̂pX,xq.

Further, if X admits a universal cover, then π̂pX,xq is exactly the profinite completion of πpX,xq,
the fundamental group of X. If the cover is finite, then this is exactly πpX,xq.

Proof. We will prove the case when X admits a finite universal cover p̂ : X̂ Ñ X. This means that X̂
is simply connected and for every covering space pY : Y Ñ X, there is a morphism qY : X̂ Ñ Y which
is itself a covering space of Y .

We know CovX » AutFx-FinSet, where x P X, so let us understand what automorphisms of Fx
look like. An automorphism α : F ñ F consists of an isomorphism for each covering space pY : Y Ñ X
from p´1

Y pxq to itself. Fix α. Then we have a permutation αX̂ : p´1

X̂
pxq Ñ p´1

X̂
pxq. Let pY : Y Ñ Y

be any other coverings space and let qY : X̂ Ñ Y be a surjective covering space. Then naturality of α
gives us the commutative diagram

p´1

X̂
pxq p´1

X̂
pxq

p´1
Y pxq p´1

Y pxq.

αX̂

„

qY qY

αY

„
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Since qY is still surjective when restricted to fibres, it has a right inverse, and so we find αY “

qY ˝ αX̂ ˝ q
´1
Y . Thus we have that α : F ñ F is fully determined by αX̂ . Thus we have that AutF is

equal to the set of possible permutations of p´1

X̂
pxq. Morphisms between connected covering spaces are

determined entirely by their action on any single fibre 1 so this is the same as the group of isomorphisms
φ : X̂

„
ÝÝÑ X̂: the group of deck transformations of X̂. It is a well known result (see [4]) that this is

isomorphic to the fundamental group πpX,xq of X at x and we are done.

It may seem now that this is conclusion for Galois categories, a sort of fundamental theorem that
solves the branch of maths, but in fact it only opens more options. In particular, as explored in [12], it
becomes useful in the study of schemes. A full understanding of what we are doing when we develop
the theory of covering spaces and the Galois correspondence associated with it means that in the
context of more general geometric objects where we may be unable to define a fundamental group in
terms of loops, we are instead granted the alternative of approaching it with Galois categories. In fact,
this is exactly the motivation Grothendieck had in developing the original theory. He was successful
in his attempt to transfer this powerful tool from algebraic topology to algebraic geometry with the
development of the Étale fundamental group.

The perspective developed here did not only does yield its own set of powerful algebraic tools, but
also opened the way for further abstractions and developments. It is one of these that we will explore
for the rest of this paper.

1This is a consequence of Proposition 1.34 in [4]
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Chapter 5

Affine Group Schemes

The remainder of this paper will be focused on establishing enough background to understand the def-
inition of another equivalence. Again we will be looking to establish a category of geometric/algebraic
objects and showing to be equivalent to a categorical one. In this way, we again find the minimal
categorical properties that define our algebraic category. Inspired by chapter 4, again we will have a
category with a fundamental functor of sorts which induces the equivalence, but the type of categories
and the form of the functor with be radically different.

After the rather technical proofs of the last chapter, we will be toning that down, instead focusing
on establishing definitions and key results. Our aim in the rest of the paper is not to prove to the
reader the truth of our discussion (this is done very well and in great detail in [3] and [11]), but instead
to develop enough of the definitions of both affine group schemes and neutral Tannakian categories
such that when we state our final theorem, we understand enough to be surprised and impressed by
the result. So with this understood, let’s begin.

5.1 The Definition of Affine Group Schemes

It is not unusual for us to construct groups from other algebraic objects. Given a ring R, we can look at
the underlying additive group, or consider the multiplicative group of units. We might construct groups
of matrices, or the multiplicative group of roots of unity. In all these cases, we are choosing subsets
of elements of R which satisfy certain sets of polynomial equations. If we want the multiplicative
group of R, then we look for pairs of elements px1, x2q P R2 which satisfy x1x2 “ 1R. For the
multiplicative group of 2x2 matrices with unit determinant we want quadruples px1, x2, x3, x4q P R

4

such that x1x4 ´ x2x3 “ 1R, where we then attach a group operation to the set of such quadruples.
Let us try to formalise this. All the equations in the above discussion had coefficients in t0, 1u. Let

us do one better: Let k be a field and let R be a k-algebra. This allows us to makes sense of evaluating
polynomials with coefficients in k at elements of R.

Let P Ă k rX1, . . . , Xns be a set of polynomials and let F pRq denote the set of n-tuples of elements of
R which are solutions to the elements of P . Consider an algebra homomorphism, φ : k rX1, . . . , Xns Ñ

R. Naturally such a map picks an n-tuple of elements of R, pφpXiqqiPt1,...,nu. What does it mean for
this n-tuple to be a solution to the equation in P?

For any f P P , we must have φpfq “ 0, so the ideal generated by P is a subideal of the kernel of
φ. So φ must factor through the quotient k rX1, . . . , Xns {xP y.

Claim. Given a field k, a k-algebra R, and a set of polynomials P Ă k rX1, . . . , Xns, the solutions to P
in R, denotes F pRq, has a natural bijective correspondence with k-algebra homomorphisms kAlgpA,Rq
where A “ k rX1, . . . , Xns {xP y.

Proof. We define

kAlgpA,Rq Ñ F pRq (5.1)
φ ÞÑ pφpXiqqiPI

The right hand side lies within F pRq since for any f P P , f “ 0A in A so φp0Aq “ φpfq. For example,
if f “ X1X4 ´X2X3 ´ 1A then

0R “ φp0Aq “ φpX1X4 ´X2X3 ´ 1Aq “ φpX1qφpX4q ´ φpX2qφpX3q ´ 1R
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which is exactly the condition for pφpXiqqiPt1,...,4u P F pRq.
It is injective, since φ is determined by where it sends indeterminants, and is surjective because it

has right inverse

F pRq Ñ kAlgpA,Rq (5.2)
pxiqiPI ÞÑ pXi ÞÑ xiq

where the right hand side makes sense exactly because pxiq is a solution to every equation in P .

We can see A as representing the most general solution to the equations in P . Note that I may
not be finite, or even countable.

Our experience with categories so far should help us to notice F pRq looks suspiciously like a
functor. The fact that k-algebra homomorphisms preserve solutions to polynomial equations confirms
our suspicions. So our claim has the somewhat grander statement:

Theorem 5.1.1. Let F : kAlg Ù Set be a functor which finds the set of solutions in a k-algebra to
P Ă k rX1, . . . , Xns. Then there is a k-algebra A such that F and kAlgpA,´q are naturally isomorphic.

Proof of Naturality. Let f : R ÝÑ S be a k-algebra homomorphism. We want that the diagram from
eq. (2.3)

F pRq kAlgpA,Rq

F pSq kAlgpA,Sq

commutes. For a set pxiq P F pXq, if we follow the left and bottom arrows pxiq gets taken to the map
Xi ÞÑ pfpxiq. On the other hand, following the top and right arrows it goes to pXi ÞÑ pxiqq ˝ f . These
are equal, and since the top and bottom arrows are bijections this is sufficient for naturality.

Definition 5.1.2. Let C be a category. Let F : C Ù Set be a functor. F is called representable if and
only if there is some A P Ob pCq such that F is naturally isomorphic to the Hom-functor HomCpA,´q.
In this case, we say that A represents F .

We note a couple of nice facts about representability:

Proposition 5.1.3. 1. If E : kAlg Ù Set assigns every R a single point. Then it is represented
by k.

2. If F1, F2 : kAlg Ù Set are represented by A1 and A2 respectively, then F1 ˆk F2, which takes R
to F1pRq ˆ F2pRq, is represented by AbB.

Given the amount of work we spent proving similar things in chapter 4, we can’t help but notice
that this seems to be expressing commutativity of some functor with certain limits. The functor in
question takes a k-algebra A to kAlgpA,´q (a functor itself).

These are nice enough results so far, reducing the quite involved process of picking solutions to
instead looking at homomorphisms (again, we’re reminded of the categorical attempt to "stop looking
inside"), but it doesn’t quite address what we asked for at the beginning of the section. We want
groups, rather than sets, of solutions.

Definition 5.1.4 (Affine Group Scheme 1). An affine group scheme over k is a representable functor
F : kAlg Ù Grp.

When we say that F is representable, what we mean is that it is representable when composed
with the forgetful functor Grp Ù Set. In other words, it is representable when we forget the group
structure. Note that the natural isomorphism means if F is represented by A, kAlgpA,Rq inherits
the group structure of F pRq, but that we also need to restrict our functions F pRq Ñ F pSq to group
homomorphisms. This all feels rather clumsy. It would be much nicer if this property was simply
about the representing object A. This is a perfect place to use our category theory toolbox.
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5.2 Reconsidering Groups
As we’ve done before, let us take a definition we are familiar with, that of a group, and begin to work
with it categorically:

Definition 5.2.1. A group is a set Γ together with three maps:

mult : Γˆ Γ Ñ Γ

unit : teu Ñ Γ

inv : Γ Ñ Γ

such that the following diagrams commute:

Γˆ Γˆ Γ Γˆ Γ

Γˆ Γ Γ

multˆ1Γ

1Γˆmult

mult

mult

(5.3)

for associativty;
teu ˆ Γ Γˆ Γ

Γ Γ

unitˆ1Γ

–

mult (5.4)

for left unit and
Γ Γˆ Γ

teu Γ

pinv,1Γq

mult

unit

(5.5)

for left inverse.

Recall. Given morphisms f1 : X ÝÑ Y1 and f2 : X ÝÑ Y2 in a category with products, pf1, f2q is
the unique map they induce X ÝÑ Y1 ˆ Y2. On the other hand, assume that f1 : X1 ÝÑ Y1 and
f2 : X2 ÝÑ Y2, then the morphism f1 ˆ f2 : X1 ˆ X2 ÝÑ Y1 ˆ Y2 is the morphism induced by the
arrows fi ˝ πi : X1 ˆX2 ÝÑ Yi. In Set, this is just f1 ˆ f2px1, x2q “ pfpx1q, fpx2qq.

So now let us imagine that we have a functor F : kAlg Ù Set. In this new approach to groups,
what does it mean for F is induce a functor C Ù Grp? Well, for each k-algebra, R, we must choose a
triple of maps multR, invR and unitR with the above commuting diagrams. Further, we need that for
any map f : R ÝÑ S, the diagram

F pRq ˆ F pRq F pRq

F pSq ˆ F pSq F pSq

multR

F pfqˆF pfq F pfq

multS

commutes, and with similar diagrams for inv and unit. But this says exactly that mult is a natural
transformation F ˆ F ñ F which satisfies eq. (5.3) for every k-algebra!

So we have the new definition:

Definition 5.2.2 (Affine Groups Scheme 2). An affine group scheme over k is a representable functor
F : kAlg Ù Set equipped with three natural transformations mult, inv and unit, satisfying eq. (5.3),
eq. (5.4) and eq. (5.5) for every k-algebra R.

This process is not quite over, though. We have started to unify our definition, but we can do one
better.

5.3 Yoneda’s Lemma and Hopf Algebras
We would like to understand what the presence of these natural transformations in definition 5.2.2 does
to the representing object A, and whether we can ensure a representable functor kAlg Ù Set is an
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affine group scheme simply by picking A well. We are interested, then, in establishing a correspondence
between natural transformations of representable functors and something else. It would be convenient
if this correspondence depended only on the representing object, and even better if we could put it
together in a categorical "don’t look inside" manner. Our next result, then, is perfect:

Theorem 5.3.1 (Yoneda’s Lemma). Let C be a locally-small category and let E,F : C Ù Set be
representable functors, represented by objects A and B respectively. Then there is a bijection between
NatpE,F q, the set of natural transformations E ñ F , and HomCpB,Aq.

Proof. Let φ P HomCpB,Aq. Now let R P Ob pCq. By representability, we have isomorphisms EpRq –
HomCpA,Rq and F pRq – HomCpB,Rq, so to get a natural transformation it is sufficient to provide a
morphisms HomCpA,Rq ÝÑ HomCpB,Rq which fulfil the naturality condition. For ψ : A ÝÑ R, we
take it to ψ ˝ φ : B ÝÑ R.

Let us show that this is a natural map. Let f : R ÝÑ S be a morphism and recall that

HomCpA, fq “ f ˝ ´.

Then we need commutativity of

EpRq – HomCpA,Rq HomCpB,Rq – F pRq

EpSq – HomCpA,Sq HomCpB,Sq – F pSq

´˝φ

f˝´ f˝´

´˝φ

Following either branch we see that ϕ ÞÑ f ˝ ϕ ˝ φ and this give us what we want.
Going the other direction, let Φ: E ñ F be a natural transformation. Then for any morphims

f : R ÝÑ S we have the commutative diagram

EpRq – HomCpA,Rq HomCpB,Rq – F pRq

EpSq – HomCpA,Sq HomCpB,Sq – F pSq

ΦR

f˝´ f˝´

ΦS

so we may take R “ A and consider where ΦR takes 1A P HomCpA,Aq in HomCpB,Aq (along the top
arrow). Let us call this φ : B ÝÑ R. Then following 1A around both sides of the diagram, we find
ΦSpfq “ f ˝ φ, so this is inverse to the operation above.

If we were to further explore the functor which takes A to HomCpA,´q, and the the categories
involved, we would be able to show that this is actually a natural isomorphism.

Corollary 5.3.2. If Φ and φ correspond to each other as above, then Φ is a natural isomorphism if
and only if φ is an isomorphism.

It is not hard to prove, that commutative diagrams are transferred by this correspondence, with a
reversal of arrows.

This result is exactly what we hoped for. It allows us to translate our information about affine
group schemes in terms of natural transformations into a definition entirely in terms of k-algebra
homomorphisms. (If this general instance was a little hard to follow, it might be worth reading the
proof through when specialised to k-algebras in appendix A.4).

Definition 5.3.3. A Hopf algebra over a field k is a k-algebra with k-algebra maps

comultiplication ∆: AÑ AbA
counit (augmentation) ε : AÑ k
coinverse (antipode) S : AÑ A

such that the following diagrams commute:

AbAbA AbA

AbA A

1Ab∆

∆b1A ∆

∆

,
k bA AbA

A A

–

εb1A

∆ and
A AbA

k A

pS,1Aq

∆

ε
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Remark. Unlike in this project, other authors may not assume commutativity when defining Hopf
Algebras.
Recall. Given three k-algebras A,B and C, and k-algebra homomorphisms f : A ÝÑ C and g : B ÝÑ
C, the map pf, gq : A b B ÝÑ C takes a b b ÞÑ fpaqgpbq, whilst f b g : A b B ÝÑ C b C takes
ab b ÞÑ fpaq b gpbq.

Using proposition 5.1.3, we see these are exactly the dual properties to the natural transformations
of definition 5.2.2 and so we get the rather pleasing result:

Theorem 5.3.4. Affine groups schemes over k correspond to Hopf algebras over k.

Example. Let us take a moment to discuss a specific example. As we discussed in section 5.1, finding
the multiplicative group of a k-algebra R is finding pairs px1, x2q P R

2 satisfying x1x2 “ 1R. So we
can see that the required representing algebra is going to be

A “ krX1, X2s{xX1X2 ´ 1y.

What Hopf algebra structure on A is appropriate here, to give us the functor F which takes R to R˚?
We know the natural transformation mult : F ˆF ñ F has multR : pr, sq ÞÑ rs. So let us following

the method from our proof of theorem 5.3.1.
We are looking for the image of 1AbA under the map

F pAbAq ˆ F pAbAq – kAlgpAbA,AbAq kAlgpA,AbAq – F pAbAq.mult

Observe that
AbA – krX1 b 1, X2 b 1, 1bX1, 1bX2s{xX1X2 ´ 1y

where we are abusing the notation xX1X2 ´ 1y to mean

xpX1X2 ´ 1q b 1, 1b pX1X2 ´ 1qy

In F pAbAqˆF pAbAq then, 1AbA corresponds, by eq. (5.1), to the 4-tuple pX1b1, X2b1, 1bX1, 1bX2q

in F pAbAqˆF pAbAq. mult takes this to pX1bX1, X2bX2q in F pAbAq, which then corresponds
to the map pXi ÞÑ Xi bXiq by eq. (5.2). So comultiplication is exactly this.

∆: AÑ AbA

Xi ÞÑ Xi bXi

The second commutative diagram, tells us that εpXiq bXi “ 1bXi so

ε : AÑ k

Xi ÞÑ 1

and the last diagram tells us that SpXiqXi “ 1, so

S : AÑ A

Xi ÞÑ X´1
i

where X´1
1 “ X2 and X´1

2 “ X1.
So the affine group scheme which takes a k-algebra to its group of multiplicative units is represented

by the Hopf algebra A with operations ∆, ε and S.

The theory of affine group schemes is rich in its own right. Due to the correspondences established
in this chapter, it seems obvious to investigate how restricting the type of group scheme or the type
of Hopf algebra effects the other object. It is not difficult to show that an affine group scheme is
commutative if and only if comultiplication is symmetric under permutation of the two tensor factors
(in this case, we say A is cocommutative). We can define affine group scheme homomorphisms as
natural maps which act as group homomorphisms on each object, and Yoneda gives us that natural
maps between affine group schemes have corresponding algebra homomorphisms, so what might these
two things tell us about one another? Does it affect our affine group schemes to require that A is
finitely generated?

Unfortunately, we must leave affine group schemes without exploring these, but [11] is a fantastic
source for the interested reader. However, we do have one last set of observations to make.
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5.4 Representations of an Affine Group Scheme
Definition 5.4.1. Let G : C Ù Grp and X : C Ù Set be functors. An action of G on X is a natural
transformation α : GˆX ñ X such that for all R P Ob pCq, αR : GpRq ˆXpRq ÝÑ XpRq is a group
action.

Remark. Given two categories C and D, we may produce the product category CˆD for which objects
are just pairs pC,Dq for C P Ob pCq and D P Ob pDq and morphisms are pairs of arrows component-
wise. So we may talk of the product of functors. For example, in definition 5.4.1, G ˆ X : C Ù

Grpˆ Set takes R to GpRq ˆXpRq.

Definition 5.4.2. Let us fix a field k and a k-vector space V . Let X : kAlg Ù Set be the functor with
XpRq “ V bR. An action GpRqˆpV bRq ÝÑ V bR is called R-linear if, for every g P GpRq, v, v1 P V
and r, r1 P R, we have

gpv b r ` v1 b r1q “ gpvq b r ` gpv1q b r1

If α : GˆX ñ X is an action of G on X and αR is R-linear for all k-algebras R, then we say we have
a linear representation of G on V .

When it is clear in the context, often the notation v b r is abandoned and instead rv is written.
As we’ve become used to, there is a Hopf algebra equivalent formulation here.

Theorem 5.4.3. Let G : kAlg Ù Grp be an affine group scheme represented by a Hopf algebra A.
The linear representations of G on V correspond to k-linear maps ρ : V ÝÑ V bA such that

V V bA

V bA V bAbA

ρ

ρ 1V b∆

ρb1A

and
V V b k

V bA

„

ρ 1V bε

commute.

Though we will not give the proof here (it can be found in [11]), we will note that this should not
be a surprise. In definition A.3.1 we have two conditions for a map σ : ΓˆX Ñ X to be a group action
and they can be expressed by saying

X ΓˆX

ΓˆX Γˆ ΓˆX

mult

σ multˆ1X

1Γˆσ

and
X teu ˆX

ΓˆX

unitˆ1X

„

σ

commute. The two diagrams in theorem 5.4.3 are dual to these.

Definition 5.4.4. A k-module V with a k-linear ρ : V ÝÑ V b A satisfying p1V b εq ˝ ρ “ 1V and
p1V b∆q ˝ ρ “ pρb 1Aq ˝ ρ is called an A-comodule.

So theorem 5.4.3 tells us that linear representations are in correspondence with A-comodules. This
result is important. It is by this correspondence that the equivalence of categories, the statement of
which this last section is building to, is proved.

It also might allows us to avoid a slightly tricky situation. Given two linear representations of G,
Gˆ pV b´q ñ V b´ and Gˆ pW b´q ñW b´, we would like to define morphisms between them.
Morphisms between categories are functors and morphisms between functors are natural transforma-
tions but morphisms between natural transformations have not been covered. The above theorem
tells us that we can understand morphisms between linear representations by transferring morphisms
between comodules and it is via this that we get to our definition:

Definition 5.4.5. Let G : kAlg Ù Grp be an affine group scheme. The category, RepkpGq, of linear
representation of G has as its objects linear representations of G on any finite-dimensional k-vector
space V .

Morphisms between representations Gˆ pV b´q ñ V b´ and Gˆ pW b´q ñW b´ are given
by the k-linear maps f that make

GpRq ˆ pV bRq V bR

GpRq ˆ pW bRq W bR

1GpRqˆpfb1Rq fb1R

commute for all k-algebras R.
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Chapter 6

Tannakian Categories

In our last chapter, we are going to step away from the meticulous, proof-based, example-informed
mathematics we have been doing up until this point. The material is explored in great depth, with
much more concern for lucidity, in [3] and this is largely what we will be following. Here, though, we
have one aim: to define everything in the following definition.

Definition 6.0.1. [Neutral Tannakian Category] A neutral Tannakian category over a field k is a rigid
abelian tensor category pC,bq such that k “ Endp1q for which there exists an exact faithful k-linear
tensor functor ω : C Ù Vectk. Any such functor is said called a fibre functor.

We already know what an exact, faithful functor is; everything else is new.

6.1 Tensor Categories

Tensor categories are a natural attempt to generalise the properties of categories with a tensor product.
In the past, tensor products have arisen as the products or coproducts in particular other categories,
but here, as we have become used to, we distil them down to a simple set of properties. As we will
see, most of this is to do with rephrasing associativty and commutativity in terms of isomorphisms,
but perhaps the most interesting quality we require, which separates the tensor product from other
instances of products we have seen, is the existence of an identity object.

Definition 6.1.1. Let C be a category and let b : C ˆ C Ù C be a functor. We write X b Y for
bpX,Y q.

An associativity constraint for pC,bq is an collection of isomorphisms1, for each X,Y, Z P Ob pCq,

φX,Y,Z : X b pY b Zq
„
ÝÝÑ pX b Y q b Z :

for which the diagram, called the pentagon axiom,

X b pY b pZ b T qq

X b ppY b Zq b T q pX b Y q b pZ b T q

pX b pY b Zqq b T ppX b Y q b Zq b T

1Xbφ φ

φ φ

φb1T

commutes, where we omit the subscripts to avoid clutter.
A commutativity constraint for pC,bq is a collection of isomorphisms, for each X,Y P Ob pCq,

ψX,Y : X b Y
„
ÝÝÑ Y bX

1What we really mean here is that we have functors F1, F2 : C ˆC ˆC Ù C which take pX,Y, Zq to X b pY b Zq
and pX bY qbZ respectively, and φ : F1 ñ F2 is a natural isomorphism between them. Similarly for the commutativity
constraint where we are looking for a natural isomorphism between the functors that take pX,Y q to X b Y and Y bX.
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such that
ψY,X ˝ ψX,Y “ 1XbY : X b Y Ù X b Y.

An associativity constraint and a commutativity constraint are called compatible, if and only if for all
objects X,Y, Z P Ob pCq, the diagram, called the hexagon axiom,

X b pY b Zq pX b Y q b Z

X b pZ b Y q Z b pX b Y q

pX b Zq b Y pZ bXq b Y

φ

1Xbψ ψ

φ φ
ψb1Y

commutes.
An identity object of pC,bq is a pair pU, uq for U P Ob pCq and an isomorphism u : U

„
ÝÝÑ U b U

such that the functor C ÝÑ C which takes X ÞÑ U bX is an equivalence of categories.
A tensor category is a system pC,b, φ, ψq where φ and ψ are compatible associativity and commu-

tativity constraints, which has an identity object.

Given a tensor category, it is not difficult to show that any identity object is unique up to unique
isomorphism, so we may talk of the identity object, and denote it/one by p1, eq. We will also assume
all tensor categories to be locally small in our discussion.

6.2 Abelian Tensor Categories
We are already familiar with a number of tensor categories. Categories of R-modules for any ring R,
or k-algebras, form tensor categories with the standard tensor products. So does Set with the Carte-
sian products (identity objects are just singletons). The category AbGrp is particularly interesting,
because it comes with many added layers of structure that may be of use to us.

The first interesting property is that the trivial group teu is both initial and final in AbGrp.

Definition 6.2.1. Let C be a category. An object Z P Ob pCq which is both initial and final is called
a zero object.

If C has a zero object, 0, then for any X,Y P Ob pCq, there is exactly one morphism through 0,
0XY : X ÝÑ 0 ÝÑ Y , and we call this a zero morphism. There are ways to discuss these in the absence
of zero objects, but that’s not necessary here.

Zero objects in some sense exist in a canonical way inside every object in the category, and every
object can be mapped into them. We have many familiar examples: t0u in Grp, R-Mod and Vectk,
the space of just one point in Top˚. They allow us to expand to categories the idea of killing parts of
an algebraic object by mapping them to zero:

Definition 6.2.2. Let C be a category with a zero object, 0. Let f : X ÝÑ Y be a morphism. If it
exists, the kernel of f , ker f , is the equaliser of f and the zero morphism 0XY .

In all our familiar categories, this conforms with exactly what we’d expect. We also have the co-
construction.

Definition 6.2.3. Let C be a category with a zero object, 0. Let f : X ÝÑ Y be a morphism. If it
exists, the cokernel of f , cokerpfq, is the coequaliser of f and the zero morphism 0XY .

In Grp, this is the projection onto the quotient of Y by the normal closure of {impfq.
It is a reasonable question to ask which morphisms have kernels and cokernels (in Grp, all mor-

phisms do) and which objects appear as the kernel or cokernel of morphisms.

Definition 6.2.4. A monomorphism f : E ÝÑ X in a category C with kernels is called normal if and
only if it is the kernel of some morphism φ : X ÝÑ Y .

An epimorphism g : Y ÝÑ A in a category C with cokernels is called normal if and only if it is the
cokernel of some morphism φ : X ÝÑ Y

This separates Grp from AbGrp:
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Proposition 6.2.5. An injective group homomorphism f : H ÝÑ G is normal if and only if impfq is
a normal subgroup of G.

Proof. If impfq is normal then f is the kernel of the projection GÑ G{impfq. On the other hand, the
kernel of any group homomorphism is a normal subgroup, so if impfq is not, then f is not normal.

So we see that every monomorphism in AbGrp is normal, whilst this is not true in Grp. On the
other hand, note that if a group homomorphism g : Y ÝÑ A is surjective, then the inclusion ker g ãÑ Y ,
has cokernel Y { ker g, and Y { ker g – img “ A. So every epimorphism in Grp is normal.

Our last observation is that in AbGrp, products and coproducts are the same objects.

Definition 6.2.6. In a category C, an object X1 ‘ . . . Xn is called a biproduct of tXiu if and only if
it has projections and inclusions that make it into both a product and a coproduct of the collection
tXiu.

This is not true in Grp, where the coproduct is the free product.

Definition 6.2.7 (Abelian categories). An abelian category is a locally-small category C which has a
zero object and all finite biproducts. Further, every kernel and cokernel exists and all monic and epic
morphisms are normal.

It can be shown that these conditions give the Hom sets of C the structure of additive abelian
groups and that morphism composition is bi-additive. This is a particularly nice property of AbGrp
and it is nice to see it arise here.

Definition 6.2.8 (Abelian tensor categories). A functor between abelian categories is called additive
if it commutes with zero objects and finite biproducts.

An abelian tensor category is a tensor category pC,bq such that C is an abelian category and b is
a bi-additive functor.

Note that if pC,bq is an abelian tensor category with identity object p1, eq, this group structure
on Hom sets means that Endp1q :“ HomCp1,1q is in fact a ring.

6.3 Rigid Tensor Categories
In the category of R-modules, there is a well established isomorphism for any R-modules X,Y and T ,

HomRpT,HomRpX,Y qq – HomRpT bR X,Y q

which tells us exactly that HomRpX,Y q represents the contravariant functor R-modop
Ù Set which

takes T to HomRpT bR X,Y q.

Definition 6.3.1. Let pC,bq be a tensor category. Let us introduce the functor Cop Ù Set, for two
fixed X,Y P Ob pCq, which takes T to HomRpT b X,Y q. If this functor is representable, then we
denote the representing object by HompX,Y q. It is called the internal Hom from X to Y .

Then, since HomCpHompX,Y qbX,Y q is the image of HompX,Y q under the functor, representabil-
ity gives an bijection HomCpHompX,Y q bX,Y q – HomCpHompX,Y q,HompX,Y qq.

Definition 6.3.2. The evaluation map is the morphism evX,Y : HompX,Y qbX ÝÑ Y corresponding
to 1HompX,Y q.

Internal Homs generalise the many instances we have of Hom sets have the structure of objects, or
objects behaving like a Hom sets. In for R-modules, the evaluation map takes f b x to fpxq, as we’d
expect.

Note that for X1, X2, Y1, Y2 P Ob pCq, we may make the map

HompX1, Y1q bHompX2, Y2q b pX1 bX2q ÝÑ Y1 b Y2

corresponding to evX1,Y1 b evX2,Y2 (with a little associativity and commutativity), and then use rep-
resentability to yield a corresponding morphism

HompX1, Y1q bHompX2, Y2q ÝÑ HompX1 bX2, Y1 b Y2q. (6.1)

An internal Hom allows us to also generalise the idea of the dual of a vector space.
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Definition 6.3.3. Let pC,bq be a tensor category. Let X P Ob pCq. If it exists, the dual of X,
denoted X˚, is defined to be HompX,1q. This comes with the evaluation map evX : X˚ bX ÝÑ 1.

Exactly by the definition of the internal Hom, we have a collection of isomorphisms (in fact, a
natural isomorphism, if all duals do exist)

HomCpT bX,1q
„
ÝÝÑ HomCpT,HompX,1qq “ HomCpT,X

˚q

Then, if X˚˚ exists, this includes an isomorphism

HomCpX bX
˚,1q

„
ÝÝÑ HomCpX,X

˚˚q

and so the morphism evX ˝ ψ : X bX˚ ÝÑ 1 corresponds to a morphism iX : X ÝÑ X˚˚.

Definition 6.3.4. An object X in a tensor category pC,bq is called reflexive if X˚˚ exists and the
map iX is an isomorphism.

Definition 6.3.5 (Rigid tensor categories). Let pC,bq be a tensor category. It is said to be rigid if
and only if:

1. For any X,Y P Ob pCq, HompX,Y q exists.

2. For any objects X1, X2, Y1, Y2 P Ob pCq, the morphism from eq. (6.1), is an isomorphisms.

3. All objects of C are reflexive.

6.4 Tensor Functors

We would like functors between tensor categories to preserve the structure in some sense:

Definition 6.4.1 (Tensor functor). Let pC,bq and pC1,b1q be tensor categories. A tensor functor is a
pair pF, cq where F : C Ù C1 is functor and c is a collection of isomorphisms2, for each X,Y P Ob pCq

cX,Y : F pXq b F pY q
„
ÝÝÑ F pX b Y q

with the following properties:

1. For any X,Y, Z P Ob pCq, we have the commutative diagram

FX b pFY b FZq FX b F pY b Zq F pX b pY b Zqq

pFX b FY q b FZ F pX b Y q b FZ F ppX b Y q b Zq.

1FXb c

φ1

c

F pφq

cb1FZ c

2. For any X,Y P Ob pCq, we have the commutative diagram

FX b FY F pX b Y q

FY b FX F pY bXq.

c

ψ1 F pψq

c

3. If pU, uq is an identity object of C, then pF pUq, F puqq is an identity object of C1.

Definition 6.4.2 (Tensor equivalence). A tensor equivalence, or equivalence of tensor categories, is a
tensor functor pF, cq : pC,bq Ù pC 1,b1q such that F : C Ù C1 is an equivalence of categories.

2Again, this is actually a natural isomorphism between the functors C ˆ C Ù C1 which send X,Y P Ob pCq to
F pXq b F pY q and F pX b Y q respectively.
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6.5 Neutral Tannakian Categories and a Final Equivalence
So we can now restate the definition that began this chapter, have now defined all the terms in it:

Definition 6.0.1. [Neutral Tannakian Category] A neutral Tannakian category over a field k is a rigid
abelian tensor category pC,bq such that k “ Endp1q for which there exists an exact faithful k-linear
tensor functor ω : C Ù Vectk. Any such functor is said called a fibre functor.

With this now at hand, we can conclude our study with the statement of one last theorem. It can
be found, with proof, as theorem 2.11 in [3]. In the same way as in our study of Galois categories,
it is an equivalence between categories of algebraic objects and a category defined by highly abstract
categorical constraints. If we are at risk of missing the enormity of this result because of how concisely
it may be stated, let us not forget the vast number of technical definitions and theorems from disparate
areas of maths that we have built just so that we might comprehend the statement:

Theorem 6.5.1. Let pC,bq be a neutral Tannakian category over a field k. Further, let ω : C Ù Vectk
be a fixed fibre functor. Then ω gives us a functor C Ù RepkpGq for some affine group scheme G and
this functor is an equivalence of tensor categories.
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Conclusion

First and foremost, this project is an attempt to lay out an example of a categorical approach to
mathematics. At first, we did this in specific reference to the similarities between theorem 0.0.1 and
theorem 0.0.2. With this motivation, we built the basic machinery of category theory, with particular
emphasis on how this began to unite familiar concepts from throughout maths. This part of the
project was completed with theorem 4.5.4, the main theorem of Galois categories. This result was the
first that we could claim to be truly categorical in nature. It is a striking piece of evidence that the
dictionary-building exercise we are undertaking has the capability to reveal deep and wide reaching
results. Additionally, it opens the way to the study of fundamental groups in algebraic geometry. It
by far eclipses the two results that inspired us to search for it and opens up the possibility that other
algebraic relationships may be distilled down to purely categorical ones. The rest of the project was
spent setting up the background to establish another one of these equivalences, this time between more
complicated categories.

The most impressive aspect of these results is that the list of conditions in the definitions of
Galois and Tannakian categories are so specific. The decomposition of morphisms into epic and monic
morphisms in definition 4.1.1, for example, is an aspect ofCovX and kSAlg that seems inconsequential,
or at least besides the point. When those properties are used, this is seen as a result of other, important
properties of algebras or covering spaces, rather than due to some value of their own. The power of
our approach here, then, is the ability to drill down to the most basic of parts what makes the proofs
work and what makes these categories behave in this way. Fundamentally, category theory, as with
much of maths, is about creating connections to bridge gaps of understanding. In our results here, we
have shown that not only can category theory do this, but it can do it in ways no other areas can.
Our concluding theorem tells us that we are only just beginning to understand what these connections
may be.

We touch on many areas of maths and there are plenty of options for an interested reader to explore
further. For pure category theory, the classic text is Mac Lane [7]. For a more modern text, Riehl
[8] extends far beyond the scope of this project with a similar emphasis on clarity and examples. For
more information specifically on Galois categories, Zomervrucht [12] is a good, if brief, set of notes,
whilst Lenstra [5] is a much more extensive look into the theory, going on to study the Galois theory
of schemes. Both sources have exercises. On the pure theory of affine group schemes, Waterhouse [11]
is clear and insightful. Finally, Deligne and Milne [3] is the definitive text on Tannakian categories,
both adding a lot of theory to the definitions given here and elaborating to a much greater extent.
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Appendix A

Appendix

A.1 Separable algebras
The statement of theorems in this section closely follow chapter 8 of [6]. As in the source, the aim here
to only to set up the main results necessary to give a key example of a Galois category, and so these
will largely be stated without proof. Further information can be found in the source, with the proofs
in chapter 2 of [5], as cited by [6].

In all that follows, we will being using k to denote a field. A lot of the content can be adapted
for k to instead be a more general ring but this will be outside of the scope of this paper. This
simplification is the biggest change from the source material. We will also assume all rings have 1 and
are commutative. In particular, we are only considering commutative algebras.

Definition A.1.1. A k-algebra is a ring A equipped with a ring homomorphism f : k Ñ A such that
f p1kq “ 1A and the image of f is contained in the centre of A. f may be referred to as the structure
map.

Recall. The centre of a ring A is the set Z pAq “ tr P A | @s P A, rs “ sru

We may consider a k-algebra as a ring that contains k, or alternatively, a k-vector space equipped
with a associative bilinear product and an identity element. More general definitions of algebras are
used elsewhere where some of these restrictions are relaxed. Note that we may abuse notation here
and talk about multiplying a element r P k and a P A, notated ra, when in fact we mean fprqa.

Definition A.1.2. For two k-algebras A and B, a k-algebra homomorphism from A to B is a ring
homomorphism φ : A Ñ B such that for r P k and a P A, φ praq “ rφ paq. As we’d like, this can be
expressed by saying the following diagram commutes in Ring:

k

A B

fA fB

φ

.

Such triangles are very familiar to us, looking suspiciously similar to the dual of those found in CovX .
Indeed the category of k-algebras kAlg is a subcategory of the coslice category k{Ring. A further
observation is that the category of commutative algebras is exactly k{CRing, where CRing is the
category of commutative rings. When we are looking out for them, familiar categorical constructions
appear everywhere.

Definition A.1.3. Suppose B is a k-algebra that is finite-dimensional as a k-vector space.Then, for
b P B, we may define the map

mb : B Ñ B

x ÞÑ bx.

This is k-linear and so we define the trace of the element b as Trpbq :“ Trpmbq. This map too is
k-linear. Note too that Trprq “ dimpBq ¨ r for any r P k.

Hom
kAlgpB, kq is itself a k-vector space and has the same dimension as B. We define a map

φ : B Ñ Hom
kAlgpB, kq

x ÞÑ φx
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Where φx : y ÞÑ Trpxyq. If φ is an isomorphism, then we say that B is separable over k.

Definition A.1.4. A polynomial f P k rXs zt0u is called separable if it has no repeated roots in k̄, an
algebraic closure of k.

An element α P k̄ is separable if its minimal polynomial fαk over k is separable.
If we have a field L with k Ă L Ă k̄, we say L is separable over k if every α P L is separable over k.
We say that L is normal over k if the minimal polynomial fαk over k for any α P L factors into

linear factors in LrXs.

Theorem A.1.5. Let k̄ be the algebraic closure of a field k. Let B be a k-algebra. Define B̄ “ Bbk k̄,
a k̄-algebra.

Then the following statements are equivalent:

1. B is separable over k.

2. B̄ is separable over k̄.

3. There is some n ě 0 such that B̄ – k̄n as k̄-algebras.

4. There exists a finite set tBiuti“1 of finite separable field extensions of k such that B –
śt
i“1Bi.

A.2 Galois Field Theory
As in appendix A.1, we closely follow chapter 8 of [6]. We only to set up the main results without
proof. The proofs may be found in chapter 2 of [5].

Definition A.2.1. A field extension L{k is algebraic if every element of L is a root of some polynomial
in krXs.

The group of automorphisms of a field L, AutpLq, is the set of isomorphisms f : L
„
ÝÝÑ L, with

the group operation of composition, Given a subgroup G ď AutpLq, we may consider LG :“ tx P L |
σpxq “ x for all σ P Gu.

A field extension L{k is called Galois if and only if it is algebraic, and that there exists G ď AutpLq,
which fixes exactly k: LG “ k.

We define the Galois group of the extension L{k as

GalpL{kq “ AutkpLq :“ tφ P AutpLq | φpxq “ x for all x P ku

Definition A.2.2. Let k be a field and let k̄ be an algebraic closure of k. Let F Ă k rXs zt0u be a
collection of non-zero polynomials.

The splitting field of F over k is the subfield of k̄ generated by k and the roots in k̄ of all the
elements of F .

Theorem A.2.3. Let k be a field and L a field extension with k Ă L Ă k̄. Let

I :“ tE Ă L | E is a finite Galois extension of ku .

I is a directed, partially ordered set under inclusion. Then the following statements are equivalent:

1. The extension L{k is a Galois.

2. L is normal and separable over k.

3. There exists a set F of non-zero separable polynomials in k such that L is the splitting field of F
over k.

4. YEPIE “ L.

Further, if any of these conditions are satisfied, then

GalpL{kq – lim
ÐÝ

GalpE{kq

where this is the limit of the diagram I Ù Grp which takes E to GalpE{kq.

Remark. We give GalpL{kq its topology precisely by making GalpE{kq a discrete space and letting
this isomorphisms induce the corresponding profinite topology. This makes the isomorphism into an
isomorphism in the category of topological groups.
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Theorem A.2.4 (Main Theorem of Galois Theory). Let k Ă L be a Galois extension of fields with
Galois group G :“ GalpL{kq. We define the maps

φ : tE Ă L | E is a field extension of ku Ñ tH ď G | H is a closed subgroupu
E ÞÑ AutEpLq

and

ϕ : tH ď G | H is a closed subgroupu Ñ tE Ă L | E is a field extension of ku

H ÞÑ LH .

Then these maps are bijective and inverse to each other, reversing inclusions.
Further if φpEq “ H then we have

• E{k is a finite extension if and only if H is open.

• If L{E is Galois then GalpL{Eq – H.

• For all σ P G, φpσrEsq “ σHσ´1.

• E{k is Galois if and only if H is normal in G. If this is true, then GalpE{kq – G{H.

Definition A.2.5. The separable closure of a field k is defined to be

ks :“
 

x P k̄ | x is separable over k
(

.

The absolute Galois group of k is Galpks{kq.

A.3 Group Actions

Definition A.3.1. [9] If A is a set and Γ is a group, then A is called a Γ-set if it has a function
σ : ΓˆAÑ A, called a group action, denoted by σpg, aq “ ga, such that

1. For every a P A, 1a “ a.

2. For every g, h P Γ and a P A, pghqa “ gphaq.

We may say in this case that Γ acts on A.
σ is called transitive if and only if for every a, b P A, there is a g P Γ with ga “ b.
σ is called free if and only if for a P A and g, h P Γ, ga “ ha implies g “ h.
In the case that A is a topological space, and in particular if it is a finite set and thus canonically

a discrete space, and Γ is a topological group, we may meaningfully talk about the action σ being
continuous. In such a case, A is called a Γ-space. Where it is clear that Γ is a topological group, we
may still refer to Γ-spaces as Γ-sets.

Definition A.3.2. If we have two Γ-sets, A and B, a morphism of Γ-sets from A to B is a function
f : A Ñ B such that fpgaq “ gfpaq for all g P Γ and a P A. On Γ-spaces, we require these to be
continuous. In this way, we define the category of Γ-sets.

A.4 Yoneda for Separable Algebras

Theorem A.4.1 (Yoneda’s Lemma for Separable Algebras). Let E,F : kAlg Ù Set be representable
functors, represented by k-algebras A and B respectively. Then there is a bijection between NatpE,F q,
the set of natural transformations E ñ F , and kAlgpB,Aq.

Proof. Let φ : B ÝÑ A. Now let R be a k-algebra. By representability, we have isomorphisms EpRq –
kAlgpA,Rq and F pRq – kAlgpB,Rq, so to get a natural transformation it is sufficient to provide a
morphisms kAlgpA,Rq ÝÑ kAlgpB,Rq which fulfil the naturality condition. For ψ : A ÝÑ R, we take
it to ψ ˝ φ : B ÝÑ R.

59



Let us show that this is a natural map. Let f : R ÝÑ S be a map of k-algebras and recall that
kAlgpA, fq “ f ˝ ´. Then we need commutativity of

EpRq – kAlgpA,Rq kAlgpB,Rq – F pRq

EpSq – kAlgpA,Sq kAlgpB,Sq – F pSq

´˝φ

f˝´ f˝´

´˝φ

Following either branch we see that ϕ ÞÑ f ˝ ϕ ˝ φ and this give us what we want.
Going the other direction, let Φ: E ñ F be a natural transformation. Then for any k-algebra

homomorphims f : R ÝÑ S we have the commutative diagram

EpRq – kAlgpA,Rq kAlgpB,Rq – F pRq

EpSq – kAlgpA,Sq kAlgpB,Sq – F pSq

ΦR

f˝´ f˝´

ΦS

so we may take R “ A and consider where ΦR takes 1A in kAlgpB,Aq (along the top arrow). Let us
call this φ : B ÝÑ R. Then following 1A around both sides of the diagram, we find ΦSpfq “ f ˝ φ, so
this is inverse to the operation above.
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